Physical Activity Among Children and Adolescents: Data from National Health and Nutrition Examination Survey (NHANES) 2003-2006

Overview

- NHANES 2003-2006 accelerometer protocol
- Accelerometer data use highlights
 - Prevalence studies
 - Trends
 - Epidemiological analyses
- Coming attractions

NHANES 2003-2006 ACCELEROMETER PROTOCOL

NHANES 2003-6 PAM Protocol

- Sample
 - Age 6+
- Sensor: ActiGraph 7164
 - Accelerometer: uniaxial (vertical)
 - 1 min epochs
- Location
 - Worn over hip on elastic velcro belt
- Wearing Protocol
 - 7 days, while awake
 - Remove for bathing, swimming, etc.

A Popular Data Resource

SYSTEMATIC REVIEW

A Catalog of Rules, Variables, and Definitions Applied to Accelerometer Data in the National Health and Nutrition Examination Survey, 2003–2006

Catrine Tudor-Locke, PhD; Sarah M. Camhi, PhD; Richard P. Troiano, PhD

Suggested citation for this article: Tudor-Locke C, Camhi SM, Troiano RP. A Catalog of Rules, Variables, and Definitions Applied to Accelerometer Data in the National Health and Nutrition Examination Survey, 2003–2006. Prev Chronic Dis 2012;9:110332. DOI: http://dx.doi.org/10.5888/pcd9.110332

- 54 publications as of December 31, 2011
- 15 focus on or include data for youth

PREVALENCE APPLICATIONS

First Objective PA Data

SPECIAL COMMUNICATIONS

Rapid Communications

Physical Activity in the United States Measured by Accelerometer

RICHARD P. TROIANO¹, DAVID BERRIGAN¹, KEVIN W. DODD¹, LOUISE C. MÂSSE¹, TIMOTHY TILERT², and MARGARET MCDOWELL²

¹National Cancer Institute, National Institutes of Health, Bethesda, MD, and ²National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD Med Sci Sports Exerc, 2008

- NHANES 2003-2004

- Age-specific thresholds for intensity
- Accumulated minutes above thresholds
- At least 4 days of 10+ hours

Activity is Much Lower for Teens

	Minutes (SEM) of Moderate or Greater Intensity	
Age Group	Boys	Girls
6-11	95.4 (4.7)	75.2 (2.0)
12-15	45.3 (3.4)	24.6 (1.8)
16-19	32.7 (2.2)	19.6 (2.4)

Girls Are Particularly at Risk

	Prevalence (% and SE) Meeting Recommendations*	
Age Group	Boys	Girls
6-11	48.9 (2.8)	34.7 (1.2)
12-15	11.9 (1.7)	3.4 (0.6)
16-19	10.0 (1.6)	5.4 (1.4)

* 60+ min/d on 5 out of 7 days

Demographics Plus Weight Status

Physical Activity in US Youth: Effect of Race/Ethnicity, Age, Gender, and Weight Status

BRITNI R. BELCHER¹, DAVID BERRIGAN², KEVIN W. DODD², B. ADAR EMKEN¹, CHIH-PING CHOU¹, and DONNA SPRUIJT-METZ¹

¹Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA; and ²National Cancer Institute, National Institutes of Health, Bethesda, MD Med Sci Sports Exerc, 2010

- NHANES 2003-2006
- Ages 6-19 years
- Included those with 4+ days of 10+ hours
- Mean counts per minute
- Daily minutes sedentary, moderate, vigorous, and moderate-vigorous PA

Age-BMI Race-Ethnic Interactions

FIGURE 1—Three-way age group–BMI–race/ethnic interaction of MVPA in males. Within race/ethnic and age groups: \dagger Normal weight differ from overweight by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from Mexican American by $P \le 0.05$.

Complex patterns of interactions

Belcher, et al., 2010

Age-BMI Race-Ethnic Interactions

FIGURE 2—Three-way age group–BMI–race/ethnic interaction of MVPA in females. Within race/ethnic and age groups: \dagger Normal weight differ from overweight by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from obese by $P \le 0.05$. \ddagger Normal weight differ from Normal weight differ from Hispanic white differ from Mexican American by $P \le 0.05$. \ddagger Normal weight differ from Mexican American by $P \le 0.05$.

Step Data

Accelerometer-Determined Steps per Day in US Children and Youth

CATRINE TUDOR-LOCKE, WILLIAM D. JOHNSON, and PETER T. KATZMARZYK

Pennington Biomedical Research Center, Baton Rouge, LA Med Sci Sports Exerc, 2010

- NHANES 2005-2006
- Ages 6-19 years
- At least 1 day of 10+ hours
- Age- and sex-specific thresholds for step categories
- Accumulated steps/day, uncensored and censored
 - Censoring steps with low counts approximates pedometer step counts
- Steps/day highest at age 6 and then declines

Few Boys Meet Active Step Criteria

■Uncensored = Censored < 500

FIGURE 1—NHANES 2005–2006 PAM participants categorized according to step-defined activity levels for male children aged 6–11 yr, considering both uncensored and censored steps: 1) <10,000 "sedentary"; 2) 10,000–12,499 "low active"; 3) 12,500–14,000 "somewhat active"; 4) 15,000–17,499 "active"; and 5) ≥17,500 steps per day "highly active."

Tudor-Locke, et al., 2010

Girls Appear to do Slightly Better

FIGURE 2—NHANES 2005–2006 PAM participants categorized according to step-defined activity levels for female children aged 6–11 yr, considering both uncensored and censored steps: 1) <7000 "sedentary"; 2) 7000–9499 "low active"; 3) 9500–11,999 "somewhat active"; 4) 12,000–14,999 "active"; and 5) \geq 14,500 steps per day "highly active."

Tudor-Locke, et al., 2010

CHANGES OVER TIME

Trends and Demographic Effects

EPIDEMIOLOGY

Disparities in Youth Physical Activity in the United States: 2003–2006

STEVEN L. GORTMAKER¹, REBEKKA LEE¹, ANGIE L. CRADOCK¹, ARTHUR M. SOBOL¹, DUSTIN T. DUNCAN¹, and Y. CLAIRE WANG²

¹Department of Society, Human Development, and Health, Harvard School of Public Health, Boston, MA; and ²Department of Health Policy and Management, Columbia Mailman School of Public Health, New York, NY Mod Soi Sports Exore 2012

Med Sci Sports Exerc, 2012

- Ages 6-19 years
- Examined changes from 2003-4 to 2005-6
 - Mean counts/minute and minutes of moderate-vigorous PA
 - Multiple regression
- Included those with 4+ days of 10+ hours

Changes Between Cycles

- Counts/minute:
 - Increased for children, but not adolescents
 - Increased for non-Hispanic white children
 - Decreased for non-Hispanic black and Mexican-American children
- Minutes of moderate-vigorous PA
 - No detectable changes

ASSOCIATIONS

Do Activity Bouts Matter?

OPEN O ACCESS Freely available online

Does the Fractionalization of Daily Physical Activity (Sporadic vs. Bouts) Impact Cardiometabolic Risk Factors in Children and Youth?

Rebecca M. Holman¹, Valerie Carson¹, Ian Janssen^{1,2}*

1 School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada, 2 Department of Community Health and Epidemiology, Queen's University, Kingston, Ontario, Canada
Published: October 5, 2011

- NHANES 2003-2006
- Ages 6-19 y
- Cardiometabolic risk score:
 - Waist circumference
 - Non-HDL cholesterol
 - C-reactive protein
 - Systolic blood pressure

Sporadic vs. Bouts of MVPA

Sedentary Behavior

Carson and Janssen *BMC Public Health* 2011, **11**:274 http://www.biomedcentral.com/1471-2458/11/274

RESEARCH ARTICLE

Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study

Valerie Carson¹ and Ian Janssen^{1,2*}

- NHANES 2003-2006
- Ages 6-19 years
- Include 4+ days of 10+ hours, with one weekend day
- Volume and pattern (bouts, breaks) of sedentary time
- TV watching (questionnaire)
- Moderate+ intensity PA

High CRS Predictors

- Low minutes of MVPA
 - Not sedentary volume or pattern
- Reported TV time, but not computer time
 - May be mediated by obesity
- TV and MVPA poorly correlated, so may need independent interventions

OTHER STUDIES

Relation of Activity to:

- Weight status
- Adiposity
- Blood pressure
- Dyslipidemia
- Metabolic risk score

 SES and acculturation among Mexican-American adolescents

• Compare accelerometer and self-report

COMING SOON...

NHANES: Advancing with Technology

2003-2006 Protocol

- Splash proof
 - Off to swim or shower
- Waist worn monitor
- Waking hours only

- Single axis of sensitivity
- 1 summary value / minute
- 72,000,000 data point for 7000 participants in 2003-4

2011-2014 Protocol

- Waterproof device
- Wrist worn monitor
- 24 hour instrument wear
 - Allows measures of sleep duration and efficiency
- Triaxial data (X, Y, & Z planes)
- 80Hz raw data capture
 240 points/sec
- 72,000,000 data points per participant

NHANES 2011-14 PAM Protocol

- Sample
 - Age 6+ (3+ from 2012)
- Sensor: ActiGraph GT3X+
 - Accelerometer: raw triaxial 80Hz data
 - Ambient light sensor
- Location
 - Worn on nondominant wrist
- Attachment
 - Removable velcro band
- Wearing Protocol
 - 7+ days of continuous wear (24/7)

Protocol Strengths and Benefits

- Maximize protocol compliance by reducing
 - Missing days of wear
 - Missing hours during waking periods

- Ability to detect upper body activities in addition to ambulatory patterns
 - Possibility of novel outcomes with pattern recognition

National Youth Fitness Survey

- Ages 3-15, target 1500 youth examined
- Same locations as NHANES 2012
 - Separate exam trailer
- Some overlap plus unique measures with NHANES
 - Screener, sample person, and family Qx.
 - Dietary recall
 - Height, weight, BMI

NYFS Exam Components

Component	Ages
Accelerometer	3 -15 y
Treadmill	6 -15 y
Lower body strength	6 -15 y
Grip strength	6 -15 y
Modified pull-up	5 -15 y
Plank	3 -15 y
Gross motor skills *	3 - 5 y

* Locomotor: run, gallop, hop, leap, horizontal jump, slide Object Control: striking a stationary ball, stationary dribble, kick, catch, overhand throw, and underhand roll.

Thank You!

Tudor-Locke C, Camhi SM, Troiano RP. A Catalog of Rules, Variables, and Definitions Applied to Accelerometer Data in the National Health and Nutrition Examination Survey, 2003– 2006. Prev Chronic Dis 2012;9:110332.