A Bayesian change point analysis of prevalence rates of chronic diseases by gender and race

Trivellore Raghunathan

Chair and Professor of Biostatistics, School of Public Health

Research Professor, Institute for Social Research University of Michigan

Presented at the National Conference on Health Statistics, August 16-18, 2010

Setup

- Need for assessing the health of the nation cannot be understated
- NCHS has been in the forefront of collecting data needed
- A look back on one such long series
 - -National Health Interview Survey (as it is currently known)
 - Began in 1957
 - Limited Data available prior to 1962
- Relate the prevalence information to time line of our history

Data

- Diseases
 - Diabetes (1957-1959, 1962-2008)
 - Asthma and Hypertension (1962-2008)
- Populations
 - Overall
 - Male/Female
 - White/Black
- Time line

- Important events (health and economic)

• The analysis is preliminary

Prevalence of Diabetes

Model

$$p_{t} = Estimate for year t$$

$$P_{t} = Population value$$

$$v_{t} = sampling variance$$

$$n_{e} = p_{t}(1-p_{t}) / v_{t}$$

$$\frac{\sin^{-1}\sqrt{p_{t}} \sim N(\theta_{t} = \sin^{-1}\sqrt{P_{t}}, n_{e}^{-1}/4)}{\theta_{t} = \alpha_{o} + \alpha_{1}t + \alpha_{2}t^{2} + \sum_{j=1}^{L} b_{j}\{(t-k_{j})_{+}\}^{2}}$$

$$b_{j} \sim iid \ N(0, \sigma_{b}^{2})$$

$$(t-k_{j})_{+} = \max(t-k_{j}, 0)$$

Analysis

- Fit the model using MCMC or MLE
- Calculate $E(P_t | Data)$
- Choose knots based on the time-line
- For this analysis choose 5 knots (1965, 1974, 1980, 1990, 2001)
- Modification (in progress)
 - Treat knots as unknown parameters and estimate them from the data

Diabetes by Gender

Prevalence

Year

Diabetes by Race

Prevalence

Year

Prevalence rates of Asthma

Prevalence rates of Hypertension

Prevalence

Asthma

Hypertension

Year

Issues and Concerns

- Major design changes, instruments, definitions etc
 - Reflecting such changes in the model development
- Any policy change takes time to have an impact. Incorporation of time lag in the model
- Outliers
- Regardless of these concerns:
 - Persistent differences between race
 - Lessening of differences between men and women

Discussion

- Relating the time series data to important epics/events can be useful to understand potential effects of policy/cultural changes
- Investigation of health disparities across various subpopulations
- Subgroups can be determined based on economic, social, cultural aspects of the society
- Useful exercise for any democratic society to look at the health of the nation
- Thank you NCHS, for this great data source!!