
Transport Layer Protocol Specification 1 Created 9/4/2015

EHR-IIS Interoperability Enhancement Project

Transport Layer Protocol Recommendation

Formal Specification

Version 1.2

September 4, 2015

Transport Layer Expert Panel

EHR-IIS Interoperability Enhancement Project

Immunization Information Systems Support Branch (IISSB)

National Center for Immunization and Respiratory Disease (NCIRD)

Centers for Disease Control and Prevention (CDC)

Last Reviewed 2/1/2016

Transport Layer Protocol Specification 2 9/4/2015

Table of Contents

1 Background ... 3
2 Transport ... 3
3 Security ... 3
4 SOAP Web Service ... 3

4.1 Actors ... 3
4.2 Workflow ... 4
4.3 Operations .. 4
4.4 Parameters .. 4
4.5 Faults .. 5
4.6 Formal Specification .. 7

4.6.1 Header ... 7

4.6.2 Schema for types ... 7
4.6.3 Message definitions .. 8
4.6.4 Operation/transaction declarations.. 8
4.6.5 SOAP 1.2 Binding .. 9
4.6.6 Service definition and footer ... 9

5 Document Management .. 10
6 Appendix A: SOAP-Based Asynchronous/Batch Exchange 11

6.1 Overview .. 11
6.2 Asynchronous Exchange and SOAP .. 11
6.3 Defining a Standard Interface .. 11
6.4 Action Plan ... 12

7 Appendix B: Implementation Notes ... 13

7.1 SOAP, HL7, and End-of-Line Terminators ... 13

Tables and Figures

Table 1 Operations .. 4
Table 2 Connectivity Test Operation Parameters ... 4
Table 3 Submit Single Message Operation Parameters .. 4
Table 4 SOAP Fault Parameters ... 6

Table 5 Document Management ... 10

Transport Layer Protocol Specification 3 9/4/2015

1 Background
The Transport Layer Expert Panel has recommended a SOAP-based transport

methodology for health system-to-health system HL7 immunization messaging

interoperability. This document describes the underlying transport, security, and SOAP

operations of the recommended approach.

The scope of this document is limited to transport, security, and SOAP operations,

parameters, and faults for SOAP-based HL7 transmissions to an IIS. Although the

transport layer is message agnostic, the expected use of the methodology is to send HL7

version 2.x messages (e.g.: 2.3.1, 2.5.1, etc…) presently used in the Immunization

Information System (IIS) setting.

The web service specification described in this document is designed to transmit single

HL7 messages synchronously, i.e., a single HL7 message is transmitted and a response is

generated immediately. Batch messages and asynchronous responses are out of scope for

this specification, but are discussed in more detail in the appendix (see Section 6).

2 Transport
The Sender and Receiver SHALL conform to SOAP 1.2 over HTTPS (HTTP over TLS

1.1 or newer) using the authentication and web service specification described in the

following subsections.

3 Security
Transport layer encryption is provided by TLS; authentication and authorization of the

sender must be performed by the receiver either using username and password credentials

passed as part of the SOAP operations (see Section 4.4), or using client certificate

authentication via TLS, or both. The authentication and authorization methods supported

by a receiving IIS are typically published in a local HL7 implementation guide for the

IIS.

4 SOAP Web Service

4.1 Actors

There are two actors in the sending of HL7 messages via SOAP in the IIS setting:

1. Sender – typically an Electronic Health Record system (EHR-S) operated by an

immunization provider, or an entity acting on behalf of an immunization provider.

The sender operates a SOAP client to send HL7 messages to an IIS.

2. Receiver – typically an IIS operated by a state or local health department. The

receiver operates a SOAP Web Service to receive HL7 messages from the sender.

Transport Layer Protocol Specification 4 9/4/2015

4.2 Workflow

The general workflow for sending an HL7 message via SOAP to an IIS follows:

1. Sender tests connectivity to IIS

2. Sender composes and sends HL7 message

3. Receiver accepts HL7 message and sends HL7 response

4. Sender accepts HL7 response and any faults

4.3 Operations

The following operations are provided by the IIS SOAP Web Service to support the

workflow:

Table 1 Operations

Operation Purpose

connectivityTest

To test connectivity; to verify that the SOAP Web Service is

accessible.

submitSingleMessage

To submit an HL7 version 2.x message (e.g.: 2.3.1, 2.5.1) to an IIS.

4.4 Parameters

Each operation has one or more input and output parameters:

Operation: connectivityTest

Table 2 Connectivity Test Operation Parameters

Parameter Input/Output Data type Description

echoBack Input String Data to be sent back by the connectivity test.

return Output String Data sent back by the test. The returned string

should include the original text sent in by the

sender. Other text may be prepended or

appended.

Operation: submitSingleMessage

Table 3 Submit Single Message Operation Parameters

Parameter Input/Output Data type Description

username Input String IIS username

password Input String IIS password

facilityID Input String IIS Facility ID

hl7Message Input String HL7 version 2.x message (e.g.: 2.3.1, 2.5.1,

etc…) intended for IIS

Transport Layer Protocol Specification 5 9/4/2015

Parameter Input/Output Data type Description

Return Output String HL7 version 2.x response (e.g.: 2.3.1, 2.5.1,

etc…) from IIS

NOTE: The username, password, and facilityID parameters are technically optional, but

are heavily used by IIS across the nation for authentication. These parameters, if used,

are defined by the IIS and provided to the sender prior to initiating HL7 transmissions.

Given their heavy usage the following system capabilities have been defined.

A sender SHALL have the ability to provide any combination of

username, password, and/or facilityID where required by receiver.

A receiver MAY require the use any combination of username, password,

and/or faciltyID.

The hl7Message and return parameter must contain the appropriate HL7 message as

defined by the Implementation Guide for Immunization Data Transactions using Version

2.x (e.g.: 2.3.1, 2.5.1, etc…) of the Health Level Seven (HL7) Standard Protocol, and any

local IIS HL7 implementation guides.

4.5 Faults

The SOAP Fault element is used to indicate error messages related to the SOAP

operations and to carry detailed information within a SOAP message regarding the error.

There are four types of SOAP Faults in the IIS SOAP Web Service:

1. UnsupportedOperationFault_Message – generated if the sender attempts to

request an operation that is not part of the IIS SOAP Web Service (See Section

4.3).

a. A receiver MAY have the ability to throw this fault.

b. A sender SHALL have the ability to catch this fault.

2. SecurityFault_Message – generated if the authentication credentials supplied in

the submitSingleMessage operation are not validated.

a. A receiver SHALL have the ability to throw this fault.

b. A sender SHALL have the ability to catch this fault.

3. MessageTooLargeFault_Message – generated if the hl7Message parameter of

the submitSingleMessage operation is too large. The maximum length (e.g.:

number of messages, number of characters, etc…) should be specified by the IIS

and provided to the sender prior to initiating HL7 transmissions.

a. A receiver MAY have the ability to throw this fault.

b. A sender SHALL have the ability to catch this fault.

4. UnknownFault_Message – Any SOAP fault that does not fit into one of the

above three SOAP Fault categories will be returned as an “unknown” fault.

a. A receiver MAY have the ability to throw this fault.

b. A sender SHALL have the ability to catch this fault.

Each type of SOAP Fault contains the following parameters:

Transport Layer Protocol Specification 6 9/4/2015

Table 4 SOAP Fault Parameters

Parameter Input/Output Data type Description

Code Output Integer SOAP Fault code number, intended for automated

use by client software to identify the fault.

Reason Output String SOAP Fault reason, intended to be a human-

readable explanation of the error that caused the

fault.

Detail Output String Detailed explanation of fault.

Fault code numbers should be specified by the IIS and provided to the sender prior to

initiating HL7 transmissions.

Transport Layer Protocol Specification 7 9/4/2015

4.6 Formal Specification

The formal specification for the IIS SOAP Web Service is contained in the following

Web Services Definition Language (WSDL) document.

4.6.1 Header
<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsp1_2="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:wsaw="http://www.w3.org/2005/08/addressing"

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

xmlns:tns="urn:cdc:iisb:2011"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="urn:cdc:iisb:2011"

name="IISServiceNew">

4.6.2 Schema for types
<!-- schema for types -->

<types>

<xsd:schema elementFormDefault="qualified" targetNamespace="urn:cdc:iisb:2011">

<xsd:complexType name="connectivityTestRequestType">

<xsd:sequence>

<xsd:element name="echoBack" type="xsd:string" minOccurs="1" maxOccurs="1" nillable="true"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="connectivityTestResponseType">

<xsd:sequence>

<xsd:element name="return" type="xsd:string" minOccurs="1" maxOccurs="1" nillable="true"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="submitSingleMessageRequestType">

<xsd:sequence>

<xsd:element name="username" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"/>

<xsd:element name="password" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"/>

<xsd:element name="facilityID" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"/>

<xsd:element name="hl7Message" type="xsd:string" minOccurs="1" maxOccurs="1" nillable="true"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="submitSingleMessageResponseType">

<xsd:sequence>

<xsd:element name="return" type="xsd:string" minOccurs="1" maxOccurs="1" nillable="true"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="soapFaultType">

<xsd:sequence>

<xsd:element name="Code" type="xsd:integer" minOccurs="1"/>

<xsd:element name="Reason" type="xsd:string" minOccurs="1"/>

<xsd:element name="Detail" type="xsd:string" minOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="UnsupportedOperationFaultType">

<xsd:sequence>

<xsd:element name="Code" type="xsd:integer" minOccurs="1"/>

<xsd:element name="Reason" fixed="UnsupportedOperation"/>

<xsd:element name="Detail" type="xsd:string" minOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SecurityFaultType">

<xsd:sequence>

<xsd:element name="Code" type="xsd:integer" minOccurs="1"/>

<xsd:element name="Reason" fixed="Security"/>

<xsd:element name="Detail" type="xsd:string" minOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="MessageTooLargeFaultType">

Transport Layer Protocol Specification 8 9/4/2015

<xsd:sequence>

<xsd:element name="Code" type="xsd:integer" minOccurs="1"/>

<xsd:element name="Reason" fixed="MessageTooLarge"/>

<xsd:element name="Detail" type="xsd:string" minOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="connectivityTest" type="tns:connectivityTestRequestType"/>

<xsd:element name="connectivityTestResponse" type="tns:connectivityTestResponseType"/>

<xsd:element name="submitSingleMessage" type="tns:submitSingleMessageRequestType"/>

<xsd:element name="submitSingleMessageResponse" type="tns:submitSingleMessageResponseType"/>

<xsd:element name="fault" type="tns:soapFaultType"/>

<xsd:element name="UnsupportedOperationFault" type="tns:UnsupportedOperationFaultType"/>

<xsd:element name="SecurityFault" type="tns:SecurityFaultType"/>

<xsd:element name="MessageTooLargeFault" type="tns:MessageTooLargeFaultType"/>

</xsd:schema>

</types>

4.6.3 Message definitions
<!-- Message definitions -->

<message name="connectivityTest_Message">

<documentation>connectivity test request</documentation>

<part name="parameters" element="tns:connectivityTest" />

</message>

<message name="connectivityTestResponse_Message">

<documentation>connectivity test response</documentation>

<part name="parameters" element="tns:connectivityTestResponse" />

</message>

<message name="submitSingleMessage_Message">

<documentation>submit single message request.</documentation>

<part name="parameters" element="tns:submitSingleMessage" />

</message>

<message name="submitSingleMessageResponse_Message">

<documentation>submit single message response</documentation>

<part name="parameters" element="tns:submitSingleMessageResponse" />

</message>

<message name="UnknownFault_Message">

<part name="fault" element="tns:fault"/>

</message>

<message name="UnsupportedOperationFault_Message">

<part name="fault" element="tns:UnsupportedOperationFault"/>

</message>

<message name="SecurityFault_Message">

<part name="fault" element="tns:SecurityFault"/>

</message>

<message name="MessageTooLargeFault_Message">

<part name="fault" element="tns:MessageTooLargeFault"/>

</message>

4.6.4 Operation/transaction declarations
<!-- Operation/transaction declarations -->

<portType name="IIS_PortType">

<operation name="connectivityTest">

<documentation>the connectivity test</documentation>

<input message="tns:connectivityTest_Message" wsaw:Action="urn:cdc:iisb:2011:connectivityTest"/>

<output message="tns:connectivityTestResponse_Message"

wsaw:Action="urn:cdc:iisb:2011:connectivityTestResponse"/>

<fault name="UnknownFault" message="tns:UnknownFault_Message"/> <!-- a general soap fault -->

<fault name="UnsupportedOperationFault" message="tns:UnsupportedOperationFault_Message"/> <!-- The

UnsupportedOperation soap fault -->

</operation>

<operation name="submitSingleMessage">

<documentation>submit single message</documentation>

<input message="tns:submitSingleMessage_Message" wsaw:Action="urn:cdc:iisb:2011:submitSingleMessage"/>

<output message="tns:submitSingleMessageResponse_Message"

wsaw:Action="urn:cdc:iisb:2011:submitSingleMessageResponse"/>

<fault name="UnknownFault" message="tns:UnknownFault_Message"/> <!-- a general soap fault -->

<fault name="SecurityFault" message="tns:SecurityFault_Message"/>

<fault name="MessageTooLargeFault" message="tns:MessageTooLargeFault_Message"/>

Transport Layer Protocol Specification 9 9/4/2015

</operation>

</portType>

4.6.5 SOAP 1.2 Binding
<!-- SOAP 1.2 Binding -->

<binding name="client_Binding_Soap12" type="tns:IIS_PortType">

<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="connectivityTest">

<soap12:operation soapAction="urn:cdc:iisb:2011:connectivityTest" />

<input><soap12:body use="literal" /></input>

<output><soap12:body use="literal" /></output>

<fault name="UnknownFault"><soap12:fault use="literal" name="UnknownFault"/></fault>

<fault name="UnsupportedOperationFault"><soap12:fault use="literal"

name="UnsupportedOperationFault"/></fault>

</operation>

<operation name="submitSingleMessage">

<soap12:operation soapAction="urn:cdc:iisb:2011:submitSingleMessage" />

<input><soap12:body use="literal" /></input>

<output><soap12:body use="literal" /></output>

<fault name="UnknownFault"><soap12:fault use="literal" name="UnknownFault"/></fault>

<fault name="SecurityFault"><soap12:fault use="literal" name="SecurityFault"/></fault>

<fault name="MessageTooLargeFault"><soap12:fault use="literal" name="MessageTooLargeFault"/></fault>

</operation>

</binding>

4.6.6 Service definition and footer
<!-- Service definition -->

<service name="client_Service">

<port binding="tns:client_Binding_Soap12" name="client_Port_Soap12">

<soap12:address location="http://localhost/WebApp/IISService" />

</port>

</service>

</definitions>

Transport Layer Protocol Specification 10 9/4/2015

5 Document Management
Table 5 Document Management

Date Changed By Comments Version #

8/25/2011 Transport

Layer Expert

Panel

Initial Version 1.0

6/4/2014 E. Larson Added Appendix B to document the

end-of-line terminator disagreement

between standards.

1.1

9/3/2015 E. Larson Added conformance statements to align

with WSDL. Added clarifying

statements where appropriate based on

community input. No changes were

made to the WSDL (Section 4.6)

1.2

Transport Layer Protocol Specification 11 9/4/2015

6 Appendix A: SOAP-Based Asynchronous/Batch
Exchange

6.1 Overview

When recommending a transport layer for health information system to IIS

interoperability, it was the goal of the transport layer expert panel to address different

processing scenarios and payload sizes, including synchronous and asynchronous (and/or

batch) exchanges. Through a detailed, consensus-based research process, the panel came

to the conclusion that SOAP web services was the best choice to handle all of the current

and future needs of IIS.

In order to truly promote interoperability, the panel recognized it was important to also

define a standard interface for the recommended SOAP transport layer. The immediate

need was for synchronous HL7 message exchange, so that interface was defined first.

Through investigation and detailed meetings, the unique requirements for asynchronous

and/or batch processing were also discovered. The remainder of this appendix will

discuss asynchronous and/or batch processing through SOAP, the specific differences

between defining a standard for synchronous and asynchronous exchanges, and the

panel’s action plan.

6.2 Asynchronous Exchange and SOAP

From a purely technical standpoint, SOAP has no limitations preventing it from

supporting asynchronous processing. Further, through the use of Message Transmission

Optimization Mechanism (MTOM), the size of the payload being sent across the wire is

not an issue. Today, several IIS, including Nevada, Massachusetts, Arizona, and Kansas,

provide the ability to submit large payloads for processing through a SOAP web service.

While several IIS have asynchronous and/or batch processing via a SOAP web service,

most of them have unique solutions which integrate their IIS batch processing and

business processes into their SOAP web service definition. This creates a challenge

when trying to define a standard interface usable by all trading partners.

However, it was acknowledged from the outset that the recommended transport layer was

not intended to replace existing functional interfaces. With this in mind, and the large

majority of asynchronous and/or batch exchanges already functional, the need for a

SOAP-based standard interface for asynchronous exchange is likely small. It is

acknowledged that the need exists, but it is assumed to be small in comparison to the

need for a synchronous standard interface.

6.3 Defining a Standard Interface

Defining a standard interface to submit a batch payload for asynchronous processing is

largely trivial through SOAP. In fact, the expert panel had basic consensus on a

submission operation through the use of MTOM. The difficulty in a standard interface

for asynchronous process exists after the batch payload has been submitted for

Transport Layer Protocol Specification 12 9/4/2015

processing. Once a batch payload is in the hands of an IIS, it can take on multiple status

codes defining the condition or state of the payload. These status codes are unique to

each IIS.

When the sending system wants to check on the submission, each IIS may have a unique

response. Without an already defined standard set of status codes, or an agreement across

all IIS on what these codes should be, it becomes a futile effort to assume the correct

solution. A simple set of status codes might be: “working,” “finished,” “not found,” and

“error.” However, this may not be sufficient for all IIS.

Further, it is unknown at this time what each IIS uses to uniquely identify a submission

and how that might be consistently messaged through a standard interface. That is, if the

sending system cannot receive and process the unique identifier for a submission, it can

never ask for an update or the response payload. While this problem isn’t as challenging

to solve as the status code problem, it is a known condition at this time.

6.4 Action Plan

As noted above, the panel acknowledges asynchronous and/or batch processing still has

its place in interoperability and is easily accomplished from a technical standpoint using

SOAP. However, there is no need to replace processes that are already working well. As

a result, the panel is focusing its work on the immediate need to define a national

standard interface for synchronous transmissions of HL7 messages. If there is a

demonstrated need for a national standard interface for asynchronous processing as well,

the panel will engage the interested parties and address the need through a consensus-

based approach.

Transport Layer Protocol Specification 13 9/4/2015

7 Appendix B: Implementation Notes

7.1 SOAP, HL7, and End-of-Line Terminators
A subtle, but important, disagreement between the HL7 V2 standard and an underlying SOAP
standard was uncovered during testing with a new provider in Rhode Island in spring 2014.

The issue has to do with end-of-line terminators.

The HL7 standard dictates that all lines shall end with a carriage return (i.e.: ASCII 13, \r,
or #xD).

The underlying XML standard used by SOAP dictates that all end-of-line terminators
should be normalized to a line feed (i.e.: ASCII 10, \n, or #xA).

As such, it is possible that the carriage returns in an HL7 message could be (as proven in Rhode
Island) converted to line feeds through SOAP transmission. Depending upon your HL7 parser,
this could be problematic.

As of March 2014, 26 IIS were either in testing or production with the CDC WSDL so it was
important to consider the ramifications of any suggested resolutions. At this time the
suggestion is a resolution on the IIS side. This will eliminate the need to roll-out an updated
version of the WSDL and most importantly will not require changes by providers.

The suggested resolution is one of two approaches.

1. Prior to calling the HL7 parser in your IIS, perform a quick find/replace to ensure
carriage returns are present

2. Adjust the HL7 parser to allow more than just carriage returns to mark the end-of-line
terminator

