Mycobacterium tuberculosis Complex Drug Susceptibility Testing Program

Model Performance Evaluation Program Report of Results
March 2023

Contents

Mycobacterium tuberculosis Complex Drug Susceptibility Testing Report for March 2023 Survey	3
Purpose	3
Report Content.	3
Contact Information.	3
Abbreviations and Acronyms	4
Introduction: Overview of MPEP Final Report.	5
Expected Drug Susceptibility Testing Results	6
Technical Notes	7
Equivalent Critical Concentrations	8
Agar Proportion	8
Broth Based Media	9
Descriptive Information about Participant Laboratories	10
Primary Classification.	10
Annual Number of MTBC Drug Susceptibility Tests Performed	10
MTBC Drug Susceptibility Test Methods Performed by Participants	11
Antituberculosis Drugs Tested by Participants	12
Isolate 2023A	13
Isolate 2023B.	19
Isolate 2023C	24
Isolate 2023D	28
Isolate 2023E	32
References	36

Mycobacterium tuberculosis Complex Drug Susceptibility Testing Report for March 2023 Survey

Purpose

To present results of the U.S. Centers for Disease Control and Prevention (CDC) Model Performance Evaluation Program (MPEP) for *Mycobacterium tuberculosis* complex (MTBC) drug susceptibility testing survey sent to participants in March 2023.

Report Content

Developed and prepared by:

Cortney Stafford, MPH, MT (ASCP), Health Scientist, Laboratory Capacity Team, Laboratory Branch (LB), Division of TB Elimination (DTBE), National Center for HIV, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), CDC

Acknowledged contributors from NCHHSTP, DTBE, and LB: Lois Diem, Stephanie Johnston, Atanaska Marinova-Petkova, Wan Moon, James Posey, and Angela Starks

Contact Information

Comments and inquiries regarding this report should be directed to:

TBMPEP@cdc.gov 404-639-4013 CDC TB MPEP Website

Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.

Abbreviations and Acronyms

Acronym	Definition
AMK	amikacin
AP	agar proportion—performed on Middlebrook 7H10 or 7H11
CAP	capreomycin
CDC	U.S. Centers for Disease Control and Prevention
CIP	ciprofloxacin
CLSI	Clinical and Laboratory Standards Institute
CYS	cycloserine
DNA	deoxyribonucleic acid
DST	drug susceptibility testing
EMB	ethambutol
ETA	ethionamide
FQ	fluoroquinolone
INH	isoniazid
KAN	kanamycin
LVX	levofloxacin
MDR	multidrug resistant
MGIT™	BACTEC™ MGIT™ 960—Mycobacteria Growth Indicator Tube
MIC	minimum inhibitory concentration
MOX	moxifloxacin
MPEP	Model Performance Evaluation Program
MTBC	Mycobacterium tuberculosis complex
PAS	p-aminosalicylic acid
PZA	pyrazinamide
OFL	ofloxacin
R	resistant
RBT	rifabutin
RIF	rifampin
RNA	ribonucleic acid
S	susceptible
Sensititre [®]	Thermo Scientific Sensititre® MYCOTB AST or customized plate
STR	streptomycin
	2000 200 200 200
VersaTREK™	Thermo Scientific VersaTREK™ Myco susceptibility
XDR	extensively drug resistant

Introduction: Overview of MPEP Final Report

The Model Performance Evaluation Program (MPEP) is an educational, self-assessment tool in which five isolates of *M. tuberculosis* complex (MTBC) are sent to participating laboratories biannually for staff to monitor their ability to determine drug resistance among the isolates. It is not a formal, graded proficiency testing program. The associated report includes results for a subset of laboratories performing drug susceptibility testing (DST) for MTBC in the United States. MPEP is a voluntary program, and this report reflects data received from participating laboratories. This aggregate report is prepared in a format that will allow comparison of DST results with those obtained by other participants using the same methods and drugs, for each isolate. We encourage circulation of this report to personnel who are either involved with DST or reporting and interpreting results for MTBC.

CDC is neither recommending nor endorsing testing practices reported by participants. For standards, participants should refer to consensus documents published by the Clinical and Laboratory Standards Institute (CLSI), "M24: Susceptibility Testing of Mycobacteria, *Nocardiae* spp., and Other Aerobic Actinomycetes" and "M24S: Performance Standards for Susceptibility Testing of Mycobacteria, *Nocardia* spp., and Other Aerobic Actinomycetes" [1–3]. Additionally, the World Health Organization (WHO) published two technical reports investigating critical concentrations, by method, for anti-tuberculosis drugs [4, 5].

Expected Drug Susceptibility Testing Results

Anticipated growth-based and molecular results for the panel of MTBC isolates sent to participants in March 2023 are shown in the tables below. Although CDC recommends broth-based methods for routine first-line DST of MTBC isolates, the results obtained by the reference agar proportion method (except for pyrazinamide, in which MGIT™ was performed) are shown in Table 1. Molecular results obtained by whole genome sequencing are listed in Table 2 [6].

Table 1. Expected Growth-based Results for March 2023 Survey

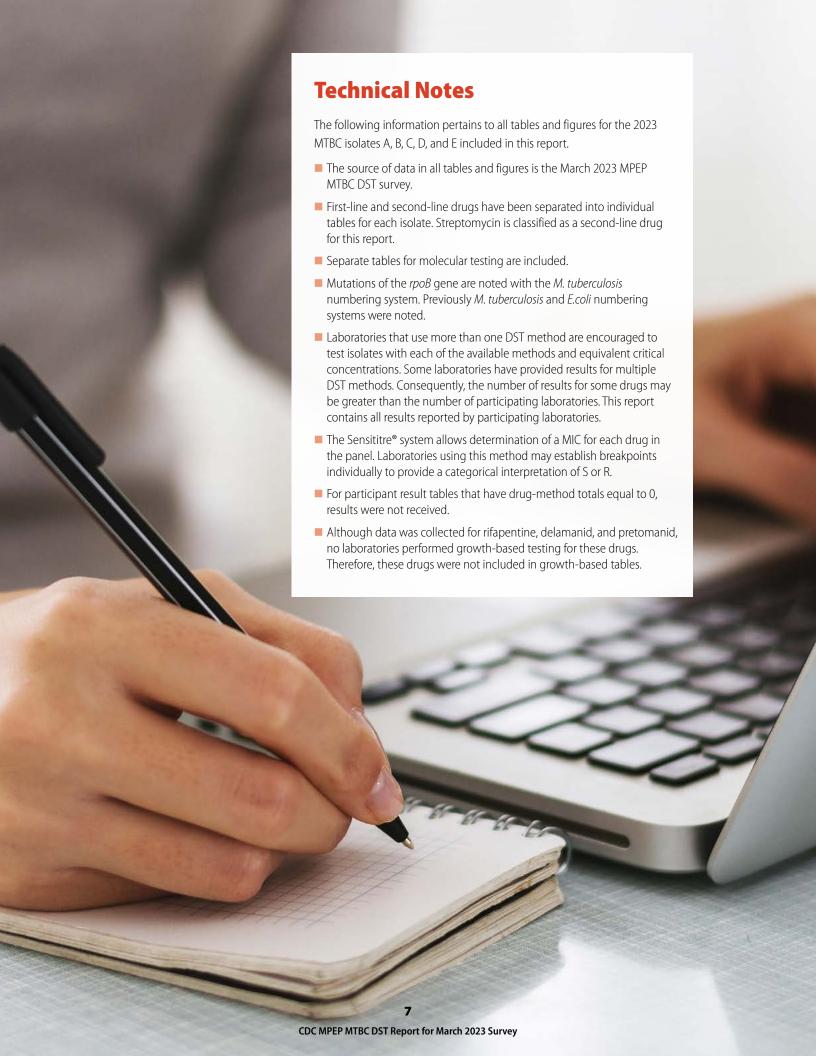
Note—S=susceptible, R=resistant

Isolate	RIF	INH	ЕМВ	PZA	Second-line Drug Resistances:
2023A	S	R (high-level*)	R	S	STR†, ETA†
2023B	R	S	S	S	
2023C	R	S	S	S	
2023D	R	S	S	S	
2023E	S	S	S	S	AMK, KAN, CAP

^{*}Resistant at 0.2 µg/ml and 1.0 µg/ml by agar proportion. See Equivalent Critical Concentration table on page 8 for more information.

Table 2. Expected Molecular Results (Mutations Detected in Loci Associated with Resistance) for March 2023 Survey

Note—Empty cell=No mutation detected


Isolate	гроВ*	katG	embB	pncA	rrs	ethA
2023A		Ser315Thr Arg463Leu†	Met306Val	Ser65Ser [†]		Partial deletion
2023B	His445Tyr					
2023C	Ser450Leu					
2023D	Val170Phe			Thr135Ala⁰		
2023E					A1401G	

^{*} M. tuberculosis numbering system used [7, 8]

[†]Resistance to STR and ETA was not included on Expected Results report.

[†] Mutation not associated with resistance [9]

^{*} Effect of mutation is unknown.

Equivalent Critical Concentrations

(Concentrations listed as µg/ml)

Agar Proportion

First-line Drugs	7H10 agar	7H11 agar
Isoniazid	0.2 and 1.0*	0.2 and 1.0*
Rifampin	1.0 [†]	1.0
Ethambutol	5.0	7.5
Pyrazinamide	Not recommended	Not recommended

NOTE—Critical concentrations as indicated in CLSI M24-A2 document [1]

[†] CLSI critical concentrations for RIF differ from revised WHO recommendation of 0.5 μg/ml published in 2021 [1, 10].

Second-line Drugs	7H10 agar	7H11 agar
Streptomycin	2.0	2.0
Levofloxacin	1.0	Not determined*
Moxifloxacin	0.5	0.5
Amikacin	4.0 [†]	Not determined*
Capreomycin	10.0 [†]	10.0 [¥]
Kanamycin	5.0 [†]	6.0 [¥]
Ethionamide	5.0	10.0
Rifabutin	0.5	0.5
<i>p</i> -Aminosalicylic acid	2.0 [¥]	8.0 [¥]
Rifapentine	Not determined*	Not determined*
Bedaquiline	Not determined*	0.25 [‡]
Linezolid	1.0 [‡]	1.0 [‡]
Clofazimine	Not determined*	Not determined*
Delamanid	Not determined*	0.016‡
Pretomanid	Not determined*	Not determined*

NOTE—Critical concentrations as indicated in CLSI M24-A2 document [1]

^{*}The higher concentration of INH should be tested as second-line drug after resistance at the critical concentration is detected [1].

^{*}Breakpoints for establishing susceptibility have not been determined.

[†]CLSI critical concentrations differ from revised WHO recommendations published in 2018 [1, 4].

[•] For AMK, the WHO recommended critical concentration for 7H10 agar is 2.0 µg/ml.

[•] For CAP, the WHO recommended critical concentration for 7H10 agar is 4.0 μ g/ml and 'Not determined' for 7H11 agar.

[•] For KAN, the WHO recommended critical concentration for 7H10 agar is 4.0 μg/ml.

 $^{^{\}mathtt{Y}}$ WHO has withdrawn the recommended critical concentrations for CAP and KAN for 7H11 agar and PAS for 7H10 and 7H11 [4].

[‡] Critical concentrations as indicated in WHO 2018 Technical Report on critical concentrations [4].

Broth Based Media

First-line Drugs	MGIT™	VersaTREK™
Isoniazid	0.1 (and 0.4*)	0.1 (and 0.4*)
Rifampin	1.0⁺	1.0
Ethambutol	5.0	5.0 (and 8.0*)
Pyrazinamide	100.0	300.0

NOTE—Critical concentrations as indicated in applicable manufacturer package inserts

[†] CLSI critical concentrations for RIF differ from revised WHO recommendation of 0.5 μg/ml published in 2021 [10].

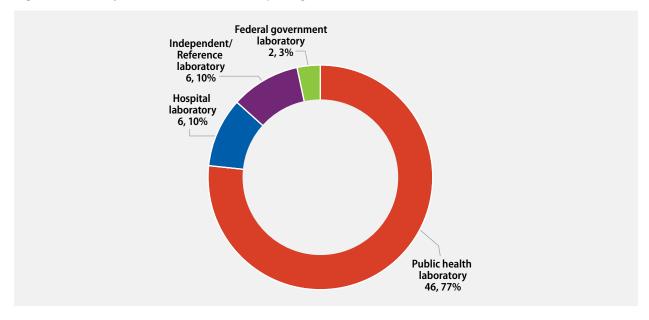
MGIT™	
1.0 (and 4.0*)	
1.0 [†]	
0.25	
1.0	
2.5	
2.5	
5.0	
Not recommended [†]	
Not determined	
1.0	
1.0	
1.0	
0.06	
Not determined	

NOTE—Critical concentrations as indicated in WHO 2018 Technical Report on critical concentrations unless noted otherwise [4]. Data for second-line critical concentrations not available for VersaTREK™

†WHO critical concentrations differ from CLSI M62 recommendations published in 2018 [3, 4].

- For LVX, the CLSI recommended critical concentration for MGIT™ is 1.5 μg/ml.

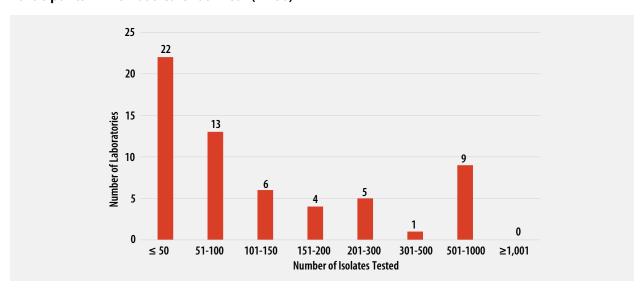
^{*}The higher concentration of INH and EMB should be tested after resistance at the critical concentration is detected [2].


^{*}Critical concentration as indicated in applicable manufacturer package insert. The higher concentration of STR should be tested after resistance at the critical concentration is detected.

Descriptive Information about Participant Laboratories

Primary Classification

This report contains DST results submitted to CDC by survey participants at 60 laboratories in 32 states, all of whom have participated in previous MPEP panels. Participants were asked to indicate the primary classification of their laboratory (Figure 1).


Figure 1. Primary Classification of Participating Laboratories, March 2023

Annual Number of MTBC Drug Susceptibility Tests Performed

The number of MTBC isolates tested for drug susceptibility by the 60 participants in 2022 (excluding isolates used for quality control) is shown in Figure 2. In 2022, the counts ranged from 0 to 922 tests. Participants at 22 (37%) laboratories reported testing 50 or fewer DST isolates per year. Laboratories with low MTBC DST volumes are encouraged to consider referral of testing because of concerns about maintaining proficiency [11].

Figure 2. Distribution of the Annual Volume of MTBC Isolates Tested for Drug Susceptibility by Participants in Previous Calendar Year (n=60)

MTBC Drug Susceptibility Test Methods Performed by Participants

The DST methods that were performed by participating laboratories for this panel of MTBC isolates are displayed in Figure 3. Of participating laboratories, 37 (62%) reported results for only one method, 19 (32%) reported two methods, and 4 (7%) noted three susceptibility methods. Fifty-six (93%) participating laboratories indicated use of MGIT.

60 56 50 Number of Laboratories 40 30 20 13 13 10 3 2 0 MGIT™ **Agar Proportion** VersaTREK™ Sensititre® Molecular Methods **Drug Susceptibility Test Method**

Figure 3. MTBC Drug Susceptibility Test Methods Performed (n=87 responses)

Molecular methods reported by participants are shown in Figure 4. The method performed most frequently (54%) was targeted DNA sequencing.

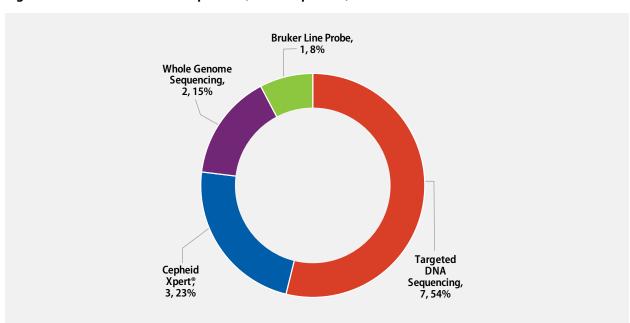
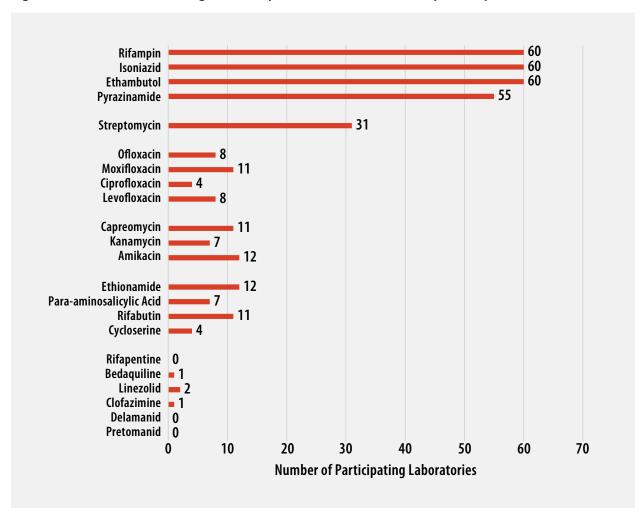



Figure 4. Molecular Method Reported (n=13 responses)

Antituberculosis Drugs Tested by Participants

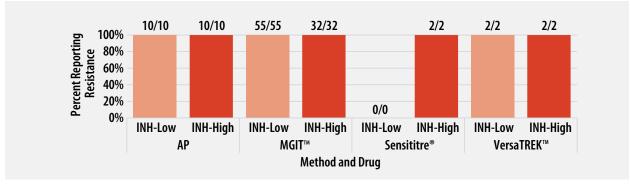
The number of participating laboratories that reported testing each antituberculosis drug in the March 2023 survey is presented in Figure 5. CLSI recommends testing a full panel of first-line drugs (rifampin [RIF], isoniazid [INH], *etha*mbutol [EMB], and pyrazinamide [PZA])[1] because it represents a combination of tests that provides the clinician with comprehensive information related to the 6- or 9-month four-drug RIPE TB treatment regimen used for many patients. Laboratories should consider the addition of fluoroquinolones to their testing panel as CDC recommends susceptibility testing for fluoroquinolones (e.g., moxifloxacin) with use of the alternate 4-month rifapentine-moxifloxacin treatment regimen; RIF may be used as a proxy for rifapentine [12]

Figure 5. Antituberculosis Drugs Tested by Growth-based Method by Participants

Isolate 2023A

Expected Results:

Drug	Growth-based*	Molecular*
RIF	S	<i>rpoB</i> wild-type
INH	R (high-level†)	katG Ser315Thr & Arg463Leu [§]
EMB	R	embB Met306Val
PZA	S	pncA Ser65Ser⁵
Fluoroquinolones	S	gyrA & gyrB wild-type
ETA	R	ethA partial deletion
STR	R	rrs or rpsL wild-type


Note—S=susceptible, R=resistant

Isoniazid

DNA sequence analysis of *inhA*, *katG*, *fabG1*, and *ahpC* of Isolate 2023A revealed a G>C point mutation in the *katG* locus resulting in wild-type serine being replaced by threonine at codon 315 (Ser315Thr); *inhA*, *fabG1*, and *ahpC* were wild-type (i.e., no mutations were detected). The Ser315Thr mutation confers resistance to INH at both the low and high concentrations [6, 9, 13].

For internal comparison purposes, this isolate was previously sent as MPEP 2020H where comparable results, by method, were reported as resistant for INH.

Figure 6. Isolate 2023A: Percent of laboratories reporting INH-Low and INH-High resistance, by growth-based method.

Note—Two laboratories performing Sensititre® reported INH MIC value as 4.0 μ g/ml (n=2).

Ethambutol

DNA sequence analysis of *embB* of Isolate 2023A revealed a A>G point mutation in the *embB* gene resulting in wild-type methionine being replaced by valine at codon 306 (Met306Val). Certain *embB* mutations at the 306 codon, such as Met306Val and Met306Leu, are associated with EMB resistance [6, 9].

For internal comparison purposes, this isolate was previously sent as MPEP 2020H where comparable results, by method, were reported.

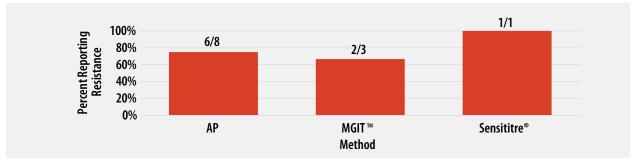
^{*} Growth-based expected results performed by agar proportion, except for PZA which was performed by MGIT. Molecular expected results performed by whole genome sequencing.

[†] Resistant at 0.2 µg/ml and 1.0 µg/ml by agar proportion. See Equivalent Critical Concentration table on page 8 for more information.

[§] Mutation not associated with resistance. [9]

Percent Reporting Resistance 100% 8/10 80% 60% 1/2 40% 6/55 20% 0/2 0% Sensititre® AP MGIT™ VersaTREK™ Method

Figure 7. Isolate 2023A: Percent of laboratories reporting EMB resistance, by growth-based method.

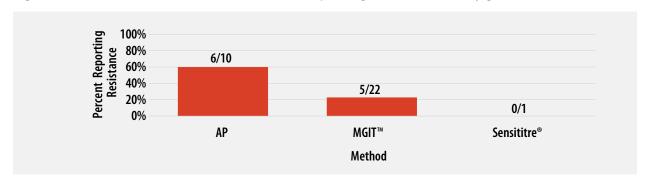

Note—Two of the laboratories performing Sensititre® reported EMB MIC values as 2.5 μ g/ml (n=1) and 8 μ g/ml (n=1).

Ethionamide

Resistance to ETA is commonly due to mutations in the *ethA* gene or mutations in *fabG1* or *inhA* resulting in cross-resistance with INH. DNA sequencing analysis revealed a partial deletion of *ethA*; *inhA* and *fabG1* were wild-type (i.e., no mutations were detected).

For internal comparison purposes, this isolate was previously sent as MPEP 2020H where 64% (9/14) of AP results, 100% (3/3) of MGIT™ results, and 0% (0/1) of Sensititre® results were reported as resistant.

Figure 8. Isolate 2023A: Percent of laboratories reporting ETA resistance, by growth-based method.


Note—One of the laboratories performing Sensititre® reported an ETA MIC value as 10 μg/ml (n=1).

Streptomycin

DNA sequencing analysis did not reveal a mutation in rrs or rpsL; other mechanisms of resistance may be important.

For internal comparison purposes, this isolate was previously sent as MPEP 2020H where 76% (11/14) of AP results, 48% (16/33) of MGIT™ results, and 100% (1/1) of Sensititre® results were reported as resistant.

Figure 9. Isolate 2023A: Percent of laboratories reporting STR resistance, by growth-based method.

Note—Two of the laboratories performing Sensititre® reported STR MIC values as 2 μ g/ml (n=2).

Complete first-line DST, second-line DST, and molecular results submitted by all participants for Isolate 2023A are listed in Tables 3–10.

Table 3. Isolate 2023A—Participant Results for First-Line DST by AP

Drug	Susceptible	Resistant	Total
Rifampin	11	0	11
Isoniazid—Low	0	10	10
Isoniazid—High	0	10	10
Ethambutol	2	8	10

Table 4. Isolate 2023A—Participant Results for First-Line DST by MGIT™

Drug	Susceptible	Resistant	Total
Rifampin	54	1	55
Isoniazid—Low	0	55	55
lsoniazid—High	0	32	32
Ethambutol	49	6	55
Pyrazinamide	53	2	55

Table 5. Isolate 2023A—Participant Results for First-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Rifampin	2	0	2
Isoniazid—Low	0	0	0
Isoniazid—High	0	2	2
Ethambutol	1	1	2

Table 6. Isolate 2023A—Participant Results for First-Line DST by VersaTREK™

Drug	Susceptible	Resistant	Total
Rifampin	2	0	2
Isoniazid—Low	0	2	2
lsoniazid—High	0	2	2
Ethambutol	2	0	2

Table 7. Isolate 2023A—Participant Results for Second-Line DST by AP

Drug	Susceptible	Resistant	Total
Streptomycin	4	6	10
Ofloxacin	5	0	5
Ciprofloxacin	3	0	3
Moxifloxacin	3	0	3
Levofloxacin	3	0	3
Amikacin	7	0	7
Kanamycin	5	0	5
Capreomycin	7	0	7
Ethionamide	2	6	8
Rifabutin	5	0	5
Cycloserine	2	1	3
p-Aminosalicylic acid	5	0	5
Bedaquiline	0	0	0
Linezolid	0	0	0
Clofazimine	0	0	0

Table 8. Isolate 2023A—Participant Results for Second-Line DST by MGIT™

Drug	Susceptible	Resistant	Total
Streptomycin	16	5	21
Ofloxacin	2	0	2
Ciprofloxacin	1	0	1
Moxifloxacin	8	0	8
Levofloxacin	5	0	5
Amikacin	3	0	3
Kanamycin	2	0	2
Capreomycin	3	0	3
Ethionamide	1	2	3
Rifabutin	4	0	4
Cycloserine	0	0	0
p-Aminosalicylic acid	1	0	1
Bedaquiline	1	0	1
Linezolid	1	0	1
Clofazimine	1	0	1

Table 9. Isolate 2023A—Participant Results for Second-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Streptomycin	1	0	1*
Ofloxacin	1	0	1
Ciprofloxacin	0	0	0
Moxifloxacin	2	0	2
Levofloxacin	1	0	1
Amikacin	2	0	2
Kanamycin	1	0	1
Capreomycin	1	0	1
Ethionamide	0	1	1
Rifabutin	2	0	2
Cycloserine	0	0	0*
p-Aminosalicylic acid	2	0	2
Bedaquiline	0	0	0
Linezolid	1	0	1
Clofazimine	0	0	0

^{*}One additional laboratory reported 'Indeterminate' for STR and 'No Interpretation' for CYC by Sensititre*.

Table 10. Isolate 2023A—Participant Results for Molecular Testing

Drug	Mutation Not Detected	Mutation Detected	Total
Rifamycins (Rifampin, Rifabutin, Rifapentine)	11	0	11
Isoniazid	0	8*	8
Ethambutol	0	5 [†]	5
Pyrazinamide	3	2 [¥]	5
Streptomycin	1	2 [‡]	3
Ofloxacin	6	12	7
Ciprofloxacin	6	12	7
Moxifloxacin	6	12	7
Levofloxacin	6	12	7
Amikacin	5	1€	6
Kanamycin	4	2€	6
Capreomycin	5	0	5
Ethionamide	3	1 [§]	4
Cycloserine	1	0	1
<i>p</i> -Aminosalicylic acid	1	0	1
Bedaquiline	3	0	3
Linezolid	3	0	3
Clofazimine	3	0	3
Delamanid	1	0	1
Pretomanid	0	0	0

^{*}Seven laboratories specifically noted the *katG* Ser315Thr mutation.

 $^{^{\}dagger}$ All 5 laboratories noted the \emph{embB} Met306Val mutation.

[¥] Both laboratories noted the *pncA* Ser65Ser mutation, specifically noting that it was not associated with PZA resistance.

[‡] One laboratory noted a frameshift deletion at 116 in gidB and one laboratory noted a deletion at 115 in gid_c.

^e This laboratory noted the detection of a gyrA mutation not associated with FQ resistance.

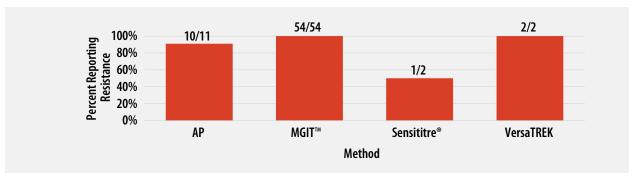
 $^{^{\}epsilon}$ Laboratories noted an eis C(-100)T mutation.

[§] This laboratory noted an *ethA* deletion.

Isolate 2023B

Expected Results:

Drug	Growth-based*	Molecular*
RIF	R	rpoB His445Tyr
INH	S	katG, inhA, & fabG1 wild-type
EMB	S	embB wild-type
PZA	S	pncA wild-type
Fluoroquinolones	S	gyrA & gyrB wild-type


Note—S=susceptible, R=resistant

Rifampin

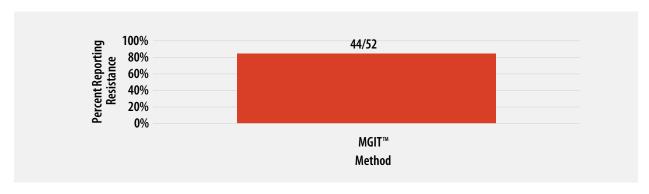
DNA sequence analysis of *rpoB* in Isolate 2023B revealed a C>T point mutation in codon 445 resulting in wild-type histidine being replaced by tyrosine (His445Tyr). Isolates with His445Tyr mutations consistently test resistant to RIF in growth-based assays [9, 13-15].

For internal comparison purposes, this isolate was previously sent as MPEP 2019H where comparable results, by method, were reported for RIF.

Figure 10. Isolate 2023B: Percent of laboratories reporting RIF resistance, by growth-based method.

Note—Two of the laboratories performing Sensititre® reported RIF MIC values as 0.25 μ g/ml (n=1) and 16 μ g/ml (n=1).

^{*}Growth-based expected results performed by agar proportion, except for PZA which was performed by MGIT. Molecular expected results performed by whole genome sequencing.


Pyrazinamide

For Isolate 2023B, DNA sequencing of the *pncA* gene did not reveal a mutation. There may be additional mechanisms of resistance to PZA besides nucleotide changes in the *pncA* gene that are still unknown [16]. Issues with false-resistance to PZA have been reported as well [17] and remain a potential concern.

Isolate 2023B was expected to be susceptible to PZA; however, of those testing PZA, resistance was reported.

For internal comparison purposes, this isolate was previously sent as MPEP 2019H where 60% (39/65) of MGIT™ results and 0% (0/1) of VersaTREK™ results were reported as resistant.

Figure 11. Isolate 2023B: Percent of laboratories reporting PZA resistance, by growth-based method.

Complete first-line DST, second-line DST, and molecular results submitted by all participants for Isolate 2023B are listed in Tables 11–18. Two laboratories noted contaminated/no growth for Isolate 2023B and did not report results for at least one antituberculosis drug tested.

Table 11. Isolate 2023B—Participant Results for First-Line DST by AP

Drug	Susceptible	Resistant	Total
Rifampin	1	10	11
Isoniazid—Low	9	1	10
Isoniazid—High	10	0	10
Ethambutol	10	0	10

Table 12. Isolate 2023B—Participant Results for First-Line DST by MGIT™

Drug	Susceptible	Resistant	Total
Rifampin	0	54	54
Isoniazid—Low	54	0	54
Isoniazid—High	21	0	21
Ethambutol	54	0	54
Pyrazinamide	8	44	52

Table 13. Isolate 2023B—Participant Results for First-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Rifampin	1	1	2
Isoniazid—Low	1	0	1
lsoniazid—High	1	0	1
Ethambutol	2	0	2

Table 14. Isolate 2023B—Participant Results for First-Line DST by VersaTREK™

Drug	Susceptible	Resistant	Total
Rifampin	0	2	2
Isoniazid—Low	2	0	2
lsoniazid—High	2	0	2
Ethambutol	2	0	2

Table 15. Isolate 2023B—Participant Results for Second-Line DST by AP

Drug	Susceptible	Resistant	Total
Streptomycin	10	0	10
Ofloxacin	5	0	5
Ciprofloxacin	3	0	3
Moxifloxacin	3	0	3
Levofloxacin	3	0	3
Amikacin	7	0	7
Kanamycin	4	1	5
Capreomycin	7	0	7
Ethionamide	8	0	8
Rifabutin	0	5	5
Cycloserine	2	1	3
p-Aminosalicylic acid	5	0	5
Bedaquiline	0	0	0
Linezolid	0	0	0
Clofazimine	0	0	0

Table 16. Isolate 2023B—Participant Results for Second-Line DST by MGIT™

Drug	Susceptible	Resistant	Total
Streptomycin	22	0	22
Ofloxacin	2	0	2
Ciprofloxacin	1	0	1
Moxifloxacin	8	0	8
Levofloxacin	5	0	5
Amikacin	4	0	4
Kanamycin	1	1	2
Capreomycin	4	0	4
Ethionamide	4	0	4
Rifabutin	1	4	5
Cycloserine	0	0	0
p-Aminosalicylic acid	1	0	1
Bedaquiline	1	0	1
Linezolid	1	0	1
Clofazimine	1	0	1

Table 17. Isolate 2023B—Participant Results for Second-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Streptomycin	2	0	2
Ofloxacin	1	0	1
Ciprofloxacin	0	0	0
Moxifloxacin	1	0	1
Levofloxacin	1	0	1
Amikacin	2	0	2
Kanamycin	1	0	1
Capreomycin	0	0	0*
Ethionamide	1	0	1
Rifabutin	0	2	2
Cycloserine	0	0	0*
p-Aminosalicylic acid	2	0	2
Bedaquiline	0	0	0
Linezolid	1	0	1
Clofazimine	0	0	0

^{*}One additional laboratory reported 'No Interpretation' for CAP and CYS by Sensititre®.

Table 18. Isolate 2023B—Participant Results for Molecular Testing

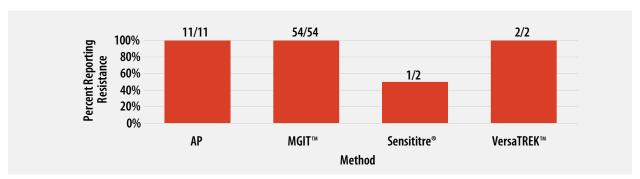
Drug	Mutation Not Detected	Mutation Detected	Total
Rifamycins (Rifampin, Rifabutin, Rifapentine)	0	12*	12
Isoniazid	8	0	8
Ethambutol	5	0	5
Pyrazinamide	5	0	5
Streptomycin	3	0	3
Ofloxacin	6	1 [†]	7
Ciprofloxacin	6	1 [†]	7
Moxifloxacin	6	1 [†]	7
Levofloxacin	6	1 [†]	7
Amikacin	6	0	6
Kanamycin	6	0	6
Capreomycin	5	0	5
Ethionamide	4	0	4
Cycloserine	1	0	1
p-Aminosalicylic acid	1	0	1
Bedaquiline	3	0	3
Linezolid	3	0	3
Clofazimine	3	0	3
Delamanid	1	0	1
Pretomanid	0	0	0

^{*}Seven laboratories noted the detection of *rpoB* His445Tyr mutation. Additionally, two laboratories performing Xpert® MTB/RIF assay noted Probe D did not bind. †This laboratory noted the detection of a *gyrA* mutation not associated with FQ resistance.

Isolate 2023C

Expected Results:

Drug	Growth-based*	Molecular*
RIF	R	rpoB Ser450Leu
INH	S	katG, inhA, & fabG1 wild-type
EMB	S	embB wild-type
PZA	S	pncA wild-type
Fluoroquinolones	S	gyrA & gyrB wild-type


Note—S=susceptible, R=resistant

Rifampin

DNA sequence analysis of *rpoB* in Isolate 2023C revealed a C>T point mutation in codon 450 in wild-type serine being replaced by leucine (Ser450Leu). Isolates with Ser450Leu mutations consistently test resistant to RIF in growth-based assays [9, 13-15].

For internal comparison purposes, this isolate was previously sent as MPEP 2020J where 88% (15/17) of AP results, 98% (58/59) of MGIT™ results, 100% (3/3) of Sensititre® results, and 100% (2/2) of VersaTREK™ results were reported as resistant.

Figure 12. Isolate 2023C: Percent of laboratories reporting RIF resistance, by growth-based method.

Note—Two of the laboratories performing Sensititre® reported RIF MIC values as 0.5 μ g/ml (n=1) and 16 μ g/ml (n=1).

Complete first-line DST, second-line DST, and molecular results submitted by all participant for Isolate 2023C are listed in Tables 19–26.

Table 19. Isolate 2023C—Participant Results for First-Line DST by AP

Drug	Susceptible	Resistant	Total
Rifampin	0	11	11
Isoniazid—Low	10	0	10
Isoniazid—High	10	0	10
Ethambutol	10	0	10

^{*}Growth-based expected results performed by agar proportion, except for PZA which was performed by MGIT. Molecular expected results performed by whole genome sequencing.

Table 20. Isolate 2023C—Participant Results for First-Line DST by MGIT[™]

Drug	Susceptible	Resistant	Total
Rifampin	0	54	54
Isoniazid—Low	54	0	54
lsoniazid—High	21	0	21
Ethambutol	54	0	54
Pyrazinamide	54	0	54

Table 21. Isolate 2023C—Participant Results for First-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Rifampin	1	1	2
Isoniazid—Low	1	0	1
Isoniazid—High	1	0	1
Ethambutol	2	0	2

Table 22. Isolate 2023C—Participant Results for First-Line DST by VersaTREK™

Drug	Susceptible	Resistant	Total
Rifampin	0	2	2
Isoniazid—Low	2	0	2
Isoniazid—High	2	0	2
Ethambutol	2	0	2

Table 23. Isolate 2023C—Participant Results for Second-Line DST by AP

Drug	Susceptible	Resistant	Total
Streptomycin	10	0	10
Ofloxacin	5	0	5
Ciprofloxacin	2	1	3
Moxifloxacin	3	0	3
Levofloxacin	3	0	3
Amikacin	7	0	7
Kanamycin	5	0	5
Capreomycin	7	0	7
Ethionamide	8	0	8
Rifabutin	1	4	5
Cycloserine	3	0	3
p-Aminosalicylic acid	5	0	5
Bedaquiline	0	0	0
Linezolid	0	0	0
Clofazimine	0	0	0

Table 24. Isolate 2023C—Participant Results for Second-Line DST by MGIT™

Drug	Susceptible	Resistant	Total
Streptomycin	22	0	22
Ofloxacin	2	0	2
Ciprofloxacin	1	0	1
Moxifloxacin	8	0	8
Levofloxacin	5	0	5
Amikacin	4	0	4
Kanamycin	2	0	2
Capreomycin	4	0	4
Ethionamide	4	0	4
Rifabutin	1	4	5
Cycloserine	0	0	0
p-Aminosalicylic acid	1	0	1
Bedaquiline	1	0	1
Linezolid	1	0	1
Clofazimine	1	0	1

Table 25. Isolate 2023C—Participant Results for Second-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Streptomycin	2	0	2
Ofloxacin	1	0	1
Ciprofloxacin	0	0	0
Moxifloxacin	1	0	1*
Levofloxacin	1	0	1
Amikacin	2	0	2
Kanamycin	1	0	1
Capreomycin	1	0	1
Ethionamide	1	0	1
Rifabutin	0	2	2
Cycloserine	0	0	0*
p-Aminosalicylic acid	2	0	2
Bedaquiline	0	0	0
Linezolid	1	0	1
Clofazimine	0	0	0

^{*}One additional laboratory reported 'No Interpretation' for MOX and CYC by Sensititre®.

Table 26. Isolate 2023C—Participant Results for Molecular Testing

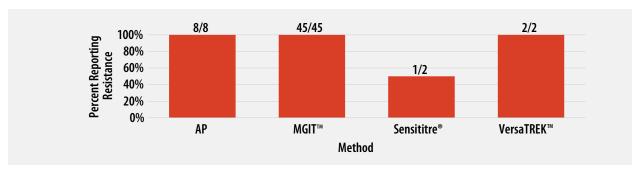
Drug	Mutation Not Detected	Mutation Detected	Total
Rifamycins (Rifampin, Rifabutin, Rifapentine)	0	12*	12
Isoniazid	8	0	8
Ethambutol	5	0	5
Pyrazinamide	5	0	5
Streptomycin	3	0	3
Ofloxacin	6	1 [†]	7
Ciprofloxacin	6	1 [†]	7
Moxifloxacin	6	1 [†]	7
Levofloxacin	6	1 [†]	7
Amikacin	6	0	6
Kanamycin	6	0	6
Capreomycin	5	0	5
Ethionamide	4	0	4
Cycloserine	1	0	1
p-Aminosalicylic acid	1	0	1
Bedaquiline	3	0	3
Linezolid	3	0	3
Clofazimine	3	0	3
Delamanid	1	0	1
Pretomanid	0	0	0

^{*}Seven laboratories noted the detection of *rpoB* Ser450Leu mutation. Additionally, two laboratories performing Xpert® MTB/RIF assay noted Probe E did not bind. †This laboratory noted the detection of a *gyrA* mutation not associated with FQ resistance.

Isolate 2023D

Expected Results:

Drug	Growth-based*	Molecular*
RIF	R	<i>rpoB</i> Val170Phe
INH	S	katG, inhA, & fabG1 wild-type
EMB	S	embB wild-type
PZA	S	pncA Thr135Ala [¥]
Fluoroquinolones	S	gyrA & gyrB wild-type


Note—S=susceptible, R=resistant

Rifampin

DNA sequence analysis of *rpoB* in Isolate 2023D revealed a G>T point mutation in codon 170 of *rpoB* resulting in wild-type valine being replaced by phenylalanine (Val170Phe). Isolates with Val170Phe mutation have been shown to confer resistance [9, 18]. The Val170Phe mutation is outside the rifampin resistance determining region tested by Cepheid® Xpert® MTB/RIF assay.

For internal comparison purposes, this isolate was previously sent as MPEP 2020D where 94% (16/17) of AP results, 90% (38/42) of MGIT™ results, 100% (4/4) of Sensititre® results, and 100% (2/2) of VersaTREK™ results were reported as resistant.

Figure 13. Isolate 2023D: Percent of laboratories reporting RIF resistance, by growth-based method.

Note—Two of the laboratories performing Sensititre* reported RIF MIC values as 0.5 μ g/ml (n=1) and 16 μ g/ml (n=1).

Pyrazinamide

DNA sequence analysis of *pncA* in Isolate 2023D revealed a A>G point mutation in codon 135 resulting in wild-type threonine being replaced by alanine (Thr135Ala). The effect of the *pncA* Thr135Ala mutation for this isolate is unknown and 49/50 (98%) of laboratories performing MGIT reported PZA susceptible.

For internal comparison purposes, this isolate was previously sent as MPEP 2020D where comparable results were reported.

Complete first-line DST, second-line DST, and molecular results submitted by all participants for Isolate 2023D are listed in Tables 27–34.

Nine laboratories noted contaminated/no growth for Isolate 2023D and did not report results for at least one antituberculosis drug tested.

^{*}Growth-based expected results performed by agar proportion, except for PZA which was performed by MGIT. Molecular expected results performed by whole genome sequencing.

^{*} Effect of mutation is unknown.

Table 27. Isolate 2023D—Participant Results for First-Line DST by AP

Drug	Susceptible	Resistant	Total
Rifampin	0	8	8
Isoniazid—Low	8	0	8
lsoniazid—High	7	0	7
Ethambutol	8	0	8

Table 28. Isolate 2023D—Participant Results for First-Line DST by MGIT™

Drug	Susceptible	Resistant	Total
Rifampin	0	45	45*
Isoniazid—Low	44	0	44 *†
lsoniazid—High	18	0	18* [†]
Ethambutol	45	0	45*
Pyrazinamide	49	1	50*¥

^{*}Four additional laboratories reported No Interpretation for RIF, INH—Low, INH—High, and EMB by MGIT $^{\rm M}$.

Table 29. Isolate 2023D—Participant Results for First-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Rifampin	1	1	2
Isoniazid—Low	1	0	1
lsoniazid—High	1	0	1
Ethambutol	2	0	2

Table 30. Isolate 2023D—Participant Results for First-Line DST by VersaTREK™

Drug	Susceptible	Resistant	Total
Rifampin	0	2	2
lsoniazid—Low	2	0	2
Isoniazid—High	2	0	2
Ethambutol	2	0	2

 $^{^{\}dagger}$ One additional laboratory reported No Interpretation for INH—Low and INH—High by MGIT $^{\mathrm{M}}$.

 $^{^{\}mathtt{Y}}$ One additional laboratory reported No Interpretation for PZA by MGIT $^{\mathtt{M}}$.

Table 31. Isolate 2023D—Participant Results for Second-Line DST by AP

Drug	Susceptible	Resistant	Total
Streptomycin	6	1	7
Ofloxacin	3	0	3*
Ciprofloxacin	2	0	2
Moxifloxacin	2	0	2
Levofloxacin	1	0	1
Amikacin	4	0	4
Kanamycin	4	0	4
Capreomycin	6	0	6
Ethionamide	5	0	5
Rifabutin	3	0	3
Cycloserine	2	0	2
p-Aminosalicylic acid	3	0	3
Bedaquiline	0	0	0
Linezolid	0	0	0
Clofazimine	0	0	0

^{*}One additional laboratory reported No Interpretation for OFL by AP.

Table 32. Isolate 2023D—Participant Results for Second-Line DST by MGIT™

Drug	Susceptible	Resistant	Total
Streptomycin	15	2	17*
Ofloxacin	2	0	2
Ciprofloxacin	1	0	1
Moxifloxacin	6	0	6
Levofloxacin	5	0	5
Amikacin	4	0	4
Kanamycin	2	0	2
Capreomycin	3	0	3 [†]
Ethionamide	4	0	4
Rifabutin	2	3	5
Cycloserine	0	0	0
p-Aminosalicylic acid	1	0	1
Bedaquiline	0	0	0
Linezolid	0	0	0
Clofazimine	0	0	0

^{*}Two additional laboratories reported No Interpretation for STR by MGIT^*.

[†]One additional laboratory reported No Interpretation for CAP by MGIT™.

Table 33. Isolate 2023D—Participant Results for Second-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Streptomycin	2	0	2
Ofloxacin	1	0	1
Ciprofloxacin	0	0	0
Moxifloxacin	1	0	1*
Levofloxacin	1	0	1
Amikacin	2	0	2
Kanamycin	1	0	1
Capreomycin	1	0	1
Ethionamide	1	0	1
Rifabutin	0	2	2
Cycloserine	1	0	1
p-Aminosalicylic acid	2	0	2
Bedaquiline	0	0	0
Linezolid	1	0	1
Clofazimine	0	0	0

^{*}One additional laboratory reported 'No Interpretation' for MOX by Sensititre*.

Table 34. Isolate 2023D—Participant Results for Molecular Testing

Drug	Mutation Not Detected	Mutation Detected	Total
Rifamycins (Rifampin, Rifabutin, Rifapentine)	8	4*	12
Isoniazid	8	0	8
Ethambutol	5	0	5
Pyrazinamide	1	4 †	5
Streptomycin	2	1 [¥]	3
Ofloxacin	7	0	7
Ciprofloxacin	7	0	7
Moxifloxacin	7	0	7
Levofloxacin	7	0	7
Amikacin	6	0	6
Kanamycin	6	0	6
Capreomycin	5	0	5
Ethionamide	4	0	4
Cycloserine	1	0	1
p-Aminosalicylic acid	1	0	1
Bedaquiline	3	0	3
Linezolid	3	0	3
Clofazimine	3	0	3
Delamanid	1	0	1
Pretomanid	0	0	0

^{*}These 4 laboratories noted the detection of the *rpoB* Val170Phe mutation.

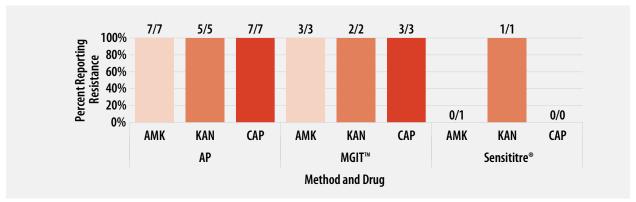
 $^{^\}dagger \text{Three laboratories}$ noted the detection of the pncA Thr135Ala mutation.

 $^{^{*}}$ This laboratory noted a deletion in $\it gidB$.

Isolate 2023E

Expected Results:

Drug	Growth-based*	Molecular*
RIF	S	<i>rpoB</i> wild-type
INH	S	katG, inhA, & fabG1 wild-type
EMB	S	embB wild-type
PZA	S	pncA wild-type
Fluoroquinolones	S	gyrA & gyrB wild-type
Second-line Injectables	AMK R, KAN R, CAP R	rrs A1401G


Note—S=susceptible, R=resistant

Second-line Injectables

DNA sequence analysis of *rrs* in Isolate 2023E revealed an A>G point mutation in codon 1401 (A1401G); *eis* and *tlyA* were wild-type (i.e., no mutations were detected). Isolates with A1401G mutation have been shown to confer resistance [18, 19].

For internal comparison purposes, this isolate was previously sent as MPEP 2017C where comparable results were reported for AMK, KAN, and CAP.

Figure 14. Isolate 2023E: Percent of laboratories reporting AMK, KAN, and CAP resistance, by growth-based method.

Note—Two laboratories performing Sensititre reported MIC values for second-line injectable drugs. Reported MIC values were as follows: AMK were 16 μ g/ml (n=2), KAN at 40 μ g/ml (n=1), and CAP MIC value as 20 μ g/ml (n=1).

Complete first-line DST, second-line DST, and molecular results submitted by all participants for Isolate 2023E are listed in Tables 35–42.

Table 35. Isolate 2023E—Participant Results for First-Line DST by AP

Drug	Susceptible	Resistant	Total
Rifampin	10	0	10
Isoniazid—Low	9	0	9
lsoniazid—High	9	0	9
Ethambutol	9	0	9

^{*}Growth-based expected results performed by agar proportion, except for PZA which was performed by MGIT. Molecular expected results performed by whole genome sequencing.

Table 36. Isolate 2023E—Participant Results for First-Line DST by MGIT™

Drug	Susceptible	Resistant	Total
Rifampin	55	0	55
Isoniazid—Low	55	0	55
Isoniazid—High	23	0	23
Ethambutol	55	0	55
Pyrazinamide	51	4	55

Table 37. Isolate 2023E—Participant Results for First-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Rifampin	2	0	2
Isoniazid—Low	1	0	1
Isoniazid—High	1	0	1
Ethambutol	1	0	1*

^{*}One additional laboratory reported Indeterminate for EMB by Sensititre*.

Table 38. Isolate 2023E—Participant Results for First-Line DST by VersaTREK™

Drug	Susceptible	Resistant	Total
Rifampin	2	0	2
Isoniazid—Low	2	0	2
lsoniazid—High	2	0	2
Ethambutol	2	0	2

Table 39. Isolate 2023E—Participant Results for Second-Line DST by AP

Drug	Susceptible	Resistant	Total
Streptomycin	9	0	9
Ofloxacin	5	0	5
Ciprofloxacin	3	0	3
Moxifloxacin	3	0	3
Levofloxacin	3	0	3
Amikacin	0	7	7
Kanamycin	0	5	5
Capreomycin	0	7	7
Ethionamide	7	0	7*
Rifabutin	5	0	5
Cycloserine	3	0	3
p-Aminosalicylic acid	5	0	5
Bedaquiline	0	0	0
Linezolid	0	0	0
Clofazimine	0	0	0

^{*}One additional laboratory reported No Interpretation for ETA by AP.

Table 40. Isolate 2023E—Participant Results for Second-Line DST by MGIT™

Drug	Susceptible	Resistant	Total
Streptomycin	22	0	22
Ofloxacin	2	0	2
Ciprofloxacin	1	0	1
Moxifloxacin	7	0	7
Levofloxacin	5	0	5
Amikacin	0	3	3
Kanamycin	0	2	2
Capreomycin	0	3	3
Ethionamide	3	0	3
Rifabutin	4	0	4
Cycloserine	0	0	0
<i>p</i> -Aminosalicylic acid	1	0	1
Bedaquiline	1	0	1
Linezolid	1	0	1
Clofazimine	1	0	1

Table 41. Isolate 2023E—Participant Results for Second-Line DST by Sensititre®

Drug	Susceptible	Resistant	Total
Streptomycin	2	0	2
Ofloxacin	1	0	1
Ciprofloxacin	0	0	0
Moxifloxacin	1	0	1*
Levofloxacin	1	0	1
Amikacin	1	0	1*
Kanamycin	0	1	1
Capreomycin	0	0	0*
Ethionamide	1	0	1
Rifabutin	2	0	2
Cycloserine	0	0	0*
p-Aminosalicylic acid	2	0	2
Bedaquiline	0	0	0
Linezolid	1	0	1
Clofazimine	0	0	0

^{*}One additional laboratory reported No Interpretation for MOX, AMK, CAP, and CYS by Sensititre*.

Table 42. Isolate 2023E—Participant Results for Molecular Testing

Drug	Mutation Not Detected	Mutation Detected	Total
Rifamycins (Rifampin, Rifabutin, Rifapentine)	11	0	11
Isoniazid	8	0	8
Ethambutol	5	0	5
Pyrazinamide	5	0	5
Streptomycin	2	1	3
Ofloxacin	6	1*	7
Ciprofloxacin	6	1*	7
Moxifloxacin	6	1*	7
Levofloxacin	6	1*	7
Amikacin	0	6 [†]	6
Kanamycin	1	5 [†]	6
Capreomycin	0	5 [†]	5
Ethionamide	4	0	4
Cycloserine	1	0	1
p-Aminosalicylic acid	1	0	1
Bedaquiline	1	2 [¥]	3
Linezolid	3	0	3
Clofazimine	1	2 [¥]	3
Delamanid	1	0	1
Pretomanid	0	0	0

 $^{^{\}star}$ This laboratory noted the detection of a $\it gyrA$ mutation not associated with FQ resistance.

 $^{^{\}dagger}$ Five laboratories noted the detection of the *rrs* A(1401)G mutation.

^{*}Both laboratories noted the detection of the rv0678 Asp141 frameshift.

References

- 1. CLSI, Susceptibility Testing of Mycobacteria, Nocardiae spp., and Other Aerobic Actinomycetes, in 3rd Ed. CLSI Standard M24. 2018, Clinical and Laboratory Standards Institute: Wayne, PA.
- 2. CLSI, Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes, in 1st Ed. CLSI supplement M62. 2018, Clinical and Laboratory Standards Institute: Wayne, PA.
- 3. CLSI, Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes, in 2nd edition. CLSI supplement M24S. 2023, Clinical and Laboratory Standards Institute: Wayne, PA.
- 4. World Health Organization, *Technical Report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis*. 2018: Geneva.
- 5. World Health Organization, *Technical report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine)*. 2021, Geneva: World Health Organization.
- 6. Campbell, P.J., et al., *Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis.* Antimicrob Agents Chemother, 2011. 55(5): p. 2032-41.
- 7. Andre, E., et al., Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria. Clin Microbiol Infect, 2017. 23(3): p. 167-172.
- 8. APHL, Issues in Mycobacterium tuberculosis complex (MTBC) Drug Susceptibility Testing: Rifampin (RIF), in APHL Issues in Brief: Infectious Diseases. 2019, Association of Public Health Laboratories: Washington, D.C.
- 9. World Health Organization, *Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance*. 2021, World Health Organization: Geneva.
- 10. World Health Organization, *Technical Report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine)*. 2021: Geneva.
- 11. APHL, *TB Drug Susceptibility Testing Expert Panel Meeting Summary Report*. 2007, Association of Public Health Laboratories: Washington, D.C.
- 12. Carr W, K.E., Starks A, Goswami N, Allen L, Winston C., Interim Guidance: 4-Month Rifapentine-Moxifloxacin Regimen for the Treatment of Drug-Susceptible Pulmonary Tuberculosis United States, 2022. MMWR Morb Mortal Wkly Rep, 2022(71): p. 285–289.
- 13. Zhang, Y. and W.W. Yew, *Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015.* Int J Tuberc Lung Dis, 2015. 19(11): p. 1276-89.
- 14. Rigouts, L., et al., *Rifampin resistance missed in automated liquid culture system for Mycobacterium tuberculosis isolates with specific rpoB mutations*. J Clin Microbiol, 2013. 51(8): p. 2641-5.
- 15. Van Deun, A., et al., *Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results.* J Clin Microbiol, 2009. 47(11): p. 3501-6.
- 16. Ramirez-Busby, S.M. and F. Valafar, *Systematic Review of Mutations in Pyrazinamidase Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis Clinical Isolates*. Antimicrob Agents Chemother, 2015. 59(9): p. 5267-77.
- 17. Chedore, P., et al., Potential for erroneous results indicating resistance when using the Bactec MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol, 2010. 48(1): p. 300-1.
- 18. Siu, G.K., et al., *Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis.* J Antimicrob Chemother, 2011. 66(4): p. 730-3.
- 19. Maus, C.E., B.B. Plikaytis, and T.M. Shinnick, *Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis*. Antimicrob Agents Chemother, 2005. 49(8): p. 3192-7.

For more information please contact

Centers for Disease Control and Prevention 1600 Clifton Road NE, Atlanta, GA 33029-4027 Telephone: 1-800-CDC-INFO (232-4636) MPEP Telephone: 404-639-4013

MPEP Email: <u>TBMPEP@cdc.gov</u>

MPEP Web: www.cdc.gov/tb/topic/laboratory/mpep/default.htm