

On Securing the Public Health Information Network Messaging System

Barry Rhodes
Associate Director For Public Health System Development

Information Resources Management Office

Centers for Disease Control and Prevention

www.cdc.gov

Abstract

The Public Health Information Network
Messaging System (henceforth, PHINMS) is the
Centers for Disease Control and Prevention’s
(CDC) implementation of the ebXML 2.0
messaging standards [EbXML]. This system was
developed for the purpose of secure and reliable
messaging over the Internet. This software has
been widely deployed by CDC and its public
health partners, including state and local health
departments, and healthcare providers. PHINMS is
designed to leverage X.509 digital certificates
issued by public key infrastructures, but does not
require a single, universal PKI. In this paper we
discuss some of the security aspects of PHINMS.

Introduction

The Public Health Information Network
Messaging System (PHINMS) is a CDC
developed implementation of existing standards
for the secure and reliable transmittal of messages
across the Internet.

The PHINMS relies on ebXML, XML encryption
[XMLENC], XML Digital Signature [XMLDSIG],
SOAP [SOAP] and other standards. PHINMS is
the primary message transport system for the
National Electronic Disease Surveillance System
[NEDSS], the Laboratory Response Network
[LRN], National Health Safety Network [NHSN]
and various other public health preparedness
programs within CDC.

By design, PHINMS is message data (payload)
independent; hence it can be used to transport any
type of data (e.g., text, binary).

Rajashekar Kailar
Chief Technology Officer

Business Networks International, Inc.

www.bnetal.com

PHINMS is operating system neutral since it is
implemented using Java and J2EE standards.

Further, it provides language neutral, queue based
interfaces for sending and receiving messages. The
preferred queue implementation is an
ODBC/JDBC compliant database table, but
support for queues based on XML file descriptors
also exists. PHINMS supports peer-to-peer
messaging, as well as messaging via a third party
using a send and poll model.

Message data security is accomplished using a
combination of encryption, end-point
authentication, and access control techniques.
Transport reliability is accomplished using
message integrity verification, transmission retries
and duplicate detection on message receipt.

Since PHINMS is used to transport sensitive data
over public un-trusted networks (e.g., Internet), it
is important to make sure that end-points trust
each other, are able to identify and authenticate
each other, and that communication channels
preserve data confidentiality and integrity. Further,
access to data sent and received should be
controlled.

The balance of this paper will focus on some of
the security considerations that went into the
design and implementation of PHINMS.

mailto:kailar@bnetal.com
http:www.cdc.gov

Security Considerations
Several security considerations went into the
design, implementation and deployment of
PHINMS. The following is a brief description:

Trust1

Secure messaging over public un-trusted
networks requires messaging parties to be able
to identify, authenticate and trust each other. For
this, firstly, real world trust relationships need to
be established between messaging organizations.
This may include establishing written
agreements on service levels, liabilities, etc.,
pursuant to OMB guidance on the Government
Paperwork Elimination Act (GPEA) as well as
the Electronic Signatures in Global and National
Commerce Act (E-SIGN). Further, business
processes for creating and handling messages at
each end of the messaging pipe need to be put in
place. Once trust and business relationships are
established in real world terms, electronic
collaboration agreements can be setup for
message transport and processing. This includes
setting up relationships to trust certification
authorities and the identity of the sending and
receiving components (e.g., using access control
lists).

In the centralized trust scenario, a central node
performs identity binding and security
credentialing, and all nodes establish trust
relationships with a central node. In this case,
assuming n nodes, only O(n) trust relations are
needed. However, in a heterogeneous
environment where trust is de-centralized, with n
nodes, each node may need to establish a trust
relationship and security credentials with every
other node, and in the worst case scenario O(n2)
trust relationships may be needed. Since
messaging nodes typically belong to
autonomous organizations and realms,
establishing a globally accepted central identity
and trust authority may not be politically

1 “Trust” in this context is more generic than what is
involved in PKI based certificate chain validation. In
particular, it may involve other (non-PKI)
authentication mechanisms (e.g., basic or form based
authentication).

acceptable. In a purely PKI based authentication
framework, a trust bridge such as the Federal

Bridge CA could be used to address this
problem. However, while PHINMS supports
PKI based authentication, it also supports other
modes of authentication, such as basic or custom
authentication.

PHINMS is designed to support both centralized
and de-centralized trust models. Decisions on
identity binding and security credentialing are
made by the deploying organizations. Decisions
on trusting the identity and security credentials
are made mutually between messaging parties at
the time when electronic collaborations are
created.

Identification, Authentication and
Authorization

Identification and authentication in messaging is
a difficult topic and is one that is far from
mature. Since the message is typically sent by a
process and not necessarily triggered by an
individual, the authentication dialog must be
scriptable. That is, the sending application must
be able to negotiate the exchange of credentials
without human intervention. This is only
possible for certain security tokens (e.g.,
hardware based one time passwords and
biometric identities don’t lend themselves to this
kind of scripted authentication exchange).

PHINMS supports automated authentication
dialogs for client-certificate based authentication
over SSL, basic authentication, and form based
authentication. The method used for mutual and
automated identification and authentication
between messaging parties is part of the
electronic agreement between them, and should
be established upfront, after the real world trust
relationship has been established.

PHINMS
Sender

PHINMS
Receiver
Server A

PHINMS
Receiver
Server B

Security Credential Q

Security Credential P

Each messaging node in the Public Health
Information Network (PHIN) is identified by a
globally unique identifier. As shown in the
diagram above, a messaging node (i.e., PHINMS
sender) may contain one or more security
credentials that allow it to conduct automated
authentication dialogs with other messaging
nodes. In the absence of a universally trusted
authority to issue security identities and
credentials, potentially, a different security
identity and set of credentials may be needed for
the purpose of authenticating to each message
destination. The security credentials may include
client certificates (key-stores), passwords, etc.
Managing these security credentials can be a
daunting task for the messaging administrator in
the face of expiring certificates, password
renewals etc. Of course, certificates can be
issued with an expiration period of years,
whereas passwords typically must be changed
every 90 days, so the problem with the latter is
far more daunting.

The recommended architecture for PHINMS
messaging is one where the PHINMS receiver
components are protected from direct access
from the Internet, by web-server proxies as
shown in the diagram at the top of the next
column:

The web-server proxies typically reside in the
organization’s DMZ, and mediate all inbound
traffic for the PHINMS receiver server,
authenticating the sending process. SSL with
client-certificate based authentication is the
preferred method of authentication for PHINMS,
since it is a well established standard and is
widely implemented by web-server proxies.

Once the message sender is authenticated, it is
the responsibility of the receiving organization’s
web-server proxy to ensure that an authenticated
sender only gains access to the receiver URL. At
this time, PHINMS does not provide support for
attribute certificates which can be used for
authorization decisions. Authorization
information is stored on the receiver server, and
enforced by the web-server proxy based on the
authenticated identity of the PHINMS senders.

Authentication Factors

For interactive authentication dialogs over the
Internet, generally, two factor authentication2 is
considered stronger and more secure than single
factor authentication.

2 Authentication mechanisms typically use secrets
such as what a user knows (e.g., password), what a
user has (e.g., hardware token) and what a user is
(e.g., thumbprint). These are called authentication
factors. For strong authentication, a combination of
two of these three factors is used.

However, in the case of B2B automated security
dialog, the security value of two-factor
authentication is significantly diminished, since
there is no real user behind the authentication
dialog.

All user factors required for the authentication
dialogs would need to be pre-configured into the
software that initiates the authentication
handshake. Further, at the time of this writing,
there are no published and accepted Internet
standards for two factor authentication in B2B
transactions. While it is possible to use hardware
based security modules (sometimes called HSM)
to emulate additional authentication factors for
B2B exchanges, such mechanisms require
additional hardware and management
complexity.

Confidentiality

Since communication is over un-trusted public
networks, protecting its confidentiality is
important. PHINMS uses payload level
asymmetric encryption for end-to-end persistent
confidentiality. The XML encryption standard
The XML encryption standard [XMLENC] is
used for encrypting the payload.

In the case of store and forward messaging, data
is protected from being read by intermediaries
by using asymmetric encryption using the public
key of the message recipient to encrypt a
random symmetric key, which in turn encrypts
the data. Additionally, communication is
typically conducted over a Secure Sockets Layer
(SSL) channel, ensuring that the message meta-
data is also protected. To ensure end-to-end
confidentiality, the channel between the web-
server proxy and the application server is also
over SSL.

Integrity and non-repudiation

PHINMS supports the use of XML digital
signatures [XMLDSIG] for message integrity
and non-repudiation of message data. Signing
certificates can be sent as part of the signature
meta-data facilitating verification of the
signature, alternatively, signing certificates can
be statically pre-configured at the receiving
node. Additionally, communication is typically
conducted over SSL with client-certificate based
authentication, which provides further message
integrity and non-repudiation assurances.

Access control

The ebXML messaging
standard supports message
labels called “Service” and
“Action”. These XML tags are
part of the message envelope,
and can be mapped to a
service on the receiving node
These XML tags are part of
the message envelope, and can
be mapped to a service on the
receiving node.

In the PHINMS
implementation, messages that
are received using the receiver
server are stored in database
tables (queues) based on their
Service and Action tags. These
queues are
“inbox”, and each application can
own inbox.

Public key infrastructure (PKI)

PHINMS is designed to leverag
does not require a universal PKI.
PHINMS sending client can
certificate issued by one certific
(CA) to authenticate itself to a PH
server, and use a client certifica
different CA to authenticate itse
PHINMS receiver server. Curre
relations are statically defined at
collaboration is established a
between messaging entities. Thi
called the “Certificate Trust
Ideally, public key certificates a
an LDAP directory (need not be c
PHINMS also supports a web-s
to publish and retrieve certifica
alternative, encryption public k
can be distributed out of b
configured at the message sendin

Public key certificates can be p
centralized LDAP directories as w

the equivalent of

 only access its

e a PKI, but it
 For instance, a

use a client
ation authority
INMS receiver
te issued by a

lf to a different
ntly, PKI trust
 the time when
nd configured
s is sometimes

List” model.
re published in
entralized), but

ervice interface
tes. As a third
ey certificates
and and pre-
g nodes.

ublished in de-
ell.

an application

Firewalls

Though firewalls are necessary for the
protection of resources within an enterprise, they
complicate matters for a messaging system
trying to send messages across enterprise
boundaries. PHINMS uses two independent
pieces of code, a client capable of sending
messages and receiving real time (synchronous)
responses, and a server receiver that can receive
messages at any time. These two components
may be used in three possible scenarios. These
examples assume that the parties are in different
organizations with separate firewalls.

1.	 Both parties are located outside their
respective firewalls (i.e., in their DMZ)

2.	 One party is outside the firewall and the
other is inside a firewall.

3.	 Both parties are inside their respective
firewalls.

In the case where both parties are located
outside their respective firewalls, messages may
be sent and received at any time and
acknowledgements send either synchronously or
asynchronously. This requires that both parties
have sending and receiving components
installed.

Basically a poll is where a client sends a
message to a server with some meta-data which
maps to a piece of functionality that looks to see
if the server has something for the client.
If so, the server can return the file as a response
to the send. Because the client is not really
receiving messages, the complexity of the
software is reduced and therefore the platform
requirements are reduced as well.

For
fire
loca
send
piec
like
syn

Bec
can
bloc
it ca

 the situation where one party is behind a
wall and the other party has a server receiver
ted in the public Internet space, message
ing options are slightly reduced. The client
e behind the firewall can send data much
 a typical browser to a receiver and receive
chronous acknowledgements back.

ause it sits behind a firewall, the client
not receive messages as firewalls typically
k this type of “push” of information. What
n do is poll for messages.

Typically the client can reside on a workstation
capable of hosting a Java application.

In the case where both parties are behind
firewalls, a third party server with Internet
presence is required to broker the exchange. For
example let’s say party A is located behind a
firewall in enterprise 1 and A wants to send a
message to party B in enterprise 2, where B is
also behind a firewall. Then A must send a

message to an intermediary server on the
Internet with a service action that states that the
server should hold the message in a queue for B.
Then when B polls the server, it will find the
message from A in its queue and request it.

Authentication Interoperability

The ebXML messaging standard specifies the
structure and semantics of message meta-data
and addressing information, but for the most
part, leaves the messaging security
(identification and authentication) aspects to the
implementers.

As shown in the above diagram, for
interoperability, in addition to the message
structure and semantics, the security
mechanisms also need to interoperate. XML
digital signatures can be used to support
message non-repudiation (the strength of
which is dependent upon legal elements that
transcend the technology), but using them
may not be sufficient for authentication,
since digital signatures can be replayed3.

3 A digital signature does not necessarily provide
freshness evidence unless it is cryptographically
bound to a freshness token, requiring time
synchronization or nonce based handshakes. Without
adequate freshness assurances use of DSIG in
authentication may not be adequate for some
applications.

When used, XML digital signatures should be
combined with a handshaking protocol such as
SSL, which mitigates the threat of replay attacks
and provide freshness assurances. The
alternative is to use SSL with client certificate
based authentication. This provides per-link
assurance of identity and authentication, as well
as confidentiality. Since SSL is the most widely
accepted standard, this is the recommended
mode of authentication for PHINMS.

Acknowledgement
The authors would like to thank the Public
Health Information Network Messaging System
team: Michele Bowman,
Dongtao Jiang, Vaughn McMullin,
Russell, and John Thomas.

Thomas Brinks,
 Thomas

Summary
The security design, implementation and
deployment considerations of CDC’s Public
Health Information Network Messaging System
(PHINMS) were discussed herein.

References
[EbXML] Message Service Specification

Version 2.0, OASIS ebXML Messaging Services
Technical Committee
(http://www.ebxml.org/specs/ebMS2.pdf)

[LRN] The Laboratory Response Network Partners
in Preparedness http://www.bt.cdc.gov/lrn/

[NEDSS] National Electronic Disease Surveillance
System, The Surveillance and Monitoring
Component for the Public Health Information
Network. (www.cdc.gov/nedss/)

[NHSN] National Healthcare Safety Network
(NHSN)(http://www.cdc.gov/ncidod/hip/NNIS/mem
bers/nhsn.htm)

[SOAP] SOAP Version 1.2 Part 0: Primer

(http://www.w3.org/TR/2003/REC-soap12-part0-
20030624/)

[XMLENC] XML Encryption Requirements

(www.w3.org/TR/xml-encryption-req)

[XMLDSIG] XML-Signature Syntax Processing
(www.w3g.org/TR/xmldsig-code

http://www.ebxml.org/specs/ebMS2.pdf
http://www.bt.cdc.gov/lrn/
http://www.cdc.gov/nedss/
http://www.cdc.gov/ncidod/hip/NNIS/members/nhsn.htm
http://www.cdc.gov/ncidod/hip/NNIS/members/nhsn.htm
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/xml-encryption-req
www.w3g.org/TR/xmldsig-code

