Public Health Information Network Messaging System

Server Installation Guide

[ep—
1\

I‘E—E ==

—— e

PUBLIC HEALTH INFORMATION NETWORK

Prepared by
U.S. Department of Health & Human Services June 2003

Table of Contents

TaDIE OFf CONTENES ...ueii e e e e e e e e e e e e 1
INEFOTUCTION e, 5
Installing the MeSSage RECEIVET ...t eeeenees 6
To Install Java RUNTIME ENVIFONMENTouiiiiiieiieee et 6
INSTAIIING TOMCAE 4.04 ... ettt b et e et bt e b e e e e sreenbeenee e 7
TO INSEAIl TOMCAL 4.04 ...t b et e et e be e nbe e e e sreenteenee e 8
TO SEAM TOMCAL. e ettt et e b e e hb e et e e sae e e b e e s nbeebeesnneenbeesnnas 8
Lo IRS] (o] o] 4 (0% L ORISR
To Test Your TomCat INStAHALION............coiiiiiiiiieee e 9
TO CoNFIGUIE SSL FOr TOMCALcciuieiiiitieitieie ettt sb et 9
Installing the Message RECEIVEI SEIVIEL..........oi i 11
To Install and Configure the MeSSage RECEIVETccueiiiiiiiiiieieee e s 12
To Set Up the Message RECEIVET DIFECIONYciiiiiiieiieieeie e 13
Installing the File-Based Message HanGIer ..o s 13
To Install the File-Based Message Handler ..o s 14
To Create a Service Map for the Message Handler ... 15
COoNFIGUIAtION OVEIVIEW ...t e e e e e e e e e e e e aba e e e e e e e eeeaeaaannns 16
Message Receiver and File-Based Message Handler Configuration Filesccoocvviiiiiiennnnne 17
Configuring the WeD. XM FIIEc.ooii e e 18
Configuring the reCeiVer XMl FIle..........oiii e e 19
Variables in the reCeiVer XMl FIlE ... s 21
Database POOKING.cc.eiiiieiie ettt sttt ettt r et e e e 24
Database Tag ValUES.cui ittt bbbttt r et e 24
Configuring the servicemap. XMl FIleoooiiiiii e 26
Configuring the Collaboration Protocol Agre€ment............cocevieiiiieiieienie e 26
PartyINTO SEOMENTSottt b e e bt st e et e reesbe et e sreeneeenee e 27
Message SENAEr PartyINFOcooiiioiiiiiie e et 27
Message ReCEIVEr PArtyINTOcc.oiiiiiiiiie e 27
TranSPOIt SUD-SEOMENTottt e b b sreenes 27
AUTNENTICATION TYPES ..ttt b ettt se e b e e be st e sbeenbeeseenbeebesneenes 28
Configuring Message HanNAIErSoooi i 29
Asynchronous and Synchronous Message Handling..........ccooveeiieninienienise e 29
Configuring the SEIVICE IMAP.......oieii ittt sbe e e 30

Last Updated 06/03/2003 ii

ConfiIgUIING QUEBUES ...uvuiii ettt e e e e e e e e e e e e e e e e e e aa e e e e e e e e eeessana s 32

Configuring the SEIVICE IMAD........coi i bbb 33
Configuring the QUEUE Moviiiiiiiiiieiei bbbttt bbbt 34
Worker QUeUe Table SCHEMAcoiiie e 35
TO CONFIQUIE the QUEUESc..iiiiiiiiieie ettt bbbt ene e 37
Installing the Route-Not-Read Message Handlercooovvveiiiiiii e, 38
ROULE-NOT-REAM SEIVIEL. ..ot bbbt eneas 38
L= 1L TSSOSO PP PR PP 38
CONFIGUIALION FIIBS ...ttt e e st e te e s e s ra e beeneesreenteeneennaenneas 38
MESSAQEDINS TADIE........cei et e e e e re e 38
Broadcast TabIe. oo 39
USEIS TaADIE. ..ot bbbttt b et bbbttt 39
Partyid _USEI TADIEc.ee ettt e st e e re e e 39
Y=o U 1 Y/ 41
JAVA KBYSTOTES ..ttt b et e e bt e s b et e s bt e sab e e nn e e e nnb e e nnbe e e nr e e e nnreeea 41
To Manage the PKCS12 KeyStore using Internet EXpIOrer.........ccccoovvveiveii v 42
Managing the Java Trust Store With Keytoolcccoovviiieii e 43
MaNAGING PASSWOITSeeuviiiieieeiesiesie e see e ste s e s e e ste e sreesaeasaessaeaeeseesreesteaneeaseesseensesseenseenee e 46
IRECEIVET PASSWOI FIIB... .ottt ettt bbb 46
PASSWOIT UTHTITIES ...ttt bbbt 47
Password Based ENCryption (PD8)ccveieeirie et 47
Substitution Cipher KEY GENEIALON..........civeiuieieieeieeieseeseeee e e ste e e se e ssaestesee e eseeeneesneenaeas 49
AULTNENTICATION ...t bbbt bbbt e ettt e st bt e et e ene e 49
LT Y/ 0] o o USSR 51
ENabling SSL AULNENTICALIONc.veiieiieiicie st sae e enre e e 51
1o Y/ 0 o o USSR 52
ENabliNg ENCIYPLIONo.viiiiiiiiiee ettt eneas 53
DIGITAl SIGNATUIES.c.eiiiieiiti et b bbbt e e et bbbttt be s 54
Generating DIgital SIGNATUIES..........ooiiiiiiieiee bbbt 54
Verifying Digital SIGNATUIESooiiiiieiie bbb 54
TO Enable Digital SIGNATUIESoiiiiieieieieie bbbt 56
Enabling Route-not-Read ENCIYPLION..........ccoiiiiiiiiiieieieere et 57
SECUNILY BESE PIaACLICES. ... ccueiuieeeie ittt bbbttt b et bbb 58
SYSTEM MAINTENMANCE ...ttt 60
SEING LOG LEVEIS ...ttt 60
LOQg File MAINTENANCEoiiiiiiieiieeie bbbttt sa bbb eneas 60

Last Updated 06/03/2003 iii

TR0 1= TR o] 7] U= 62

Message RECEIVET INTEITACEuiuiiieiiieie bbb 62
Example Message Handler SEIVIELcooo i 63
APPENAIX i 68
N 0] 01 0 1 SRS 68
Worker QUeUe GENEIAtION SCHIPLScviiiiieereeie i et eie st se e ste e e e ae e re e e s e e sreeeesreenns 68
N o] 01 00 LD = TSRS 70
Transport QUeue GENEratioN SCIIPLS.......iiveiieieriere e st e e e se e ae e ste e e e e eeeneenns 70
N 0] 1= 0 1SS 73
Worker QUeUe GENEIAtION SCHIPLS .. .cviiieiierieeie s esieete s se e ste e e e ae e te e e s e e saeeeeeneenrs 73
N 0] 01 0 1 I PSSR 75
Route-not-Read SQL GENEration SCHPLS.......cveiueiiieiierieiieseesiesiesee e eeseesre e see e ae e e sreenee e 75
N 0] 01 0 13 =SS 79
File-Based MESSA0E QUEUE........ecuiieerieeieesiesieeteeseesteestessaesteesseaseesseesseaseesseesseassesseesseassessenssenseens 79
N 0] 01 40 13 S 81
Transport Level Status and Error COUES.......cviiiiiie et 81
N o] 1= 0 1TSS 82
EXample reCeIVEr. XM FIlEcov it re e 82
N 0] 01 00 13 SRS 83
Example Collaborative Protocol Agreement (CPA).......cov e 83
N o 01 0o 1 SRS 85
Example ReceiVer PasSWOId File.........c.ccviiiiieiiiie e 85

Last Updated 06/03/2003 iv

Introduction

The Public Health Information Network Messaging System Server Installation Guide
provides step-by-step procedures for the system administrator to install and configure the
Message Receiver server software for the Public Health Information Network Messaging
System. The procedures include installing and configuring the:

Java Virtual Machine
Java Application Server
ebXML server software

The configuration details of ebXML features such as data encryption, data signing and
authentication schemes, as well as the system administration tasks, such as log file
maintenance, are also included in this guide. In addition, the Message Handler
Development section provides instructions for building custom message handlers.

To use this guide to install and maintain The Public Health Information Network
Messaging System’s Message Receiver software, you need to be familiar with:

Server system administration for Windows or Unix
Java

Web application servers

Database Connectivity

Web security

Last Updated 06/03/2003 5

Installing the Message Receiver

Before you install the Message Server software, install the Message Sender software. See
The Public Health Information Network Messaging System Client Installation Guide for

details.

To install the Message Receiver do the following procedures. Step-by-step instructions
are included.

1.

© ©® N ks W

Install Java Runtime Environment.

Install Tomcat 4.04.

Start and stop Tomcat.

Test Tomcat Installation.

Configure SSL for Tomcat.

Install and configure the Message Receiver.

Set up the Message Receiver Directory.
(Optional) Install the File-Based Message Handler.
Create a Service Map for the Message Handler.

To Install Java Runtime Environment

For Windows:

Copy the j2re-1_4 0 _03-windows-i586.exe file from <XXXXXX> on the Public
Health Messaging Software’s CD into a temporary location on disk. If the
directory doesn’t exist create it.

Double-click the installer's icon and follow the instructions.

Type <installedPath>\java\j2rel1.4.0_03 for the destination folder and then click
Next.

Select Microsoft Internet Explorer Java Plug-in (optional) and then click
Next.

Note You must have administrative permissions to install the Java 2
JRE on Microsoft Windows 2000 and XP

When you are finished with the installation you can delete the download file to
recover disk space.

Last Updated 06/03/2003 6

For Linux:

1. Copy the j2re-1 4 0 _03-linux-i586.bin file from <XXXXXX> on the Public
Health Messaging Software’s CD to <installedPath>/java on disk. If the
directory doesn’t exist create it.

2. Type the following command to start the installer’s script:
-/<installedPath>/java/j2re-1_4 0 03-1inux-i586.bin

3. Follow the instructions.

4. A message appears: “Do you agree to the above license terms?” Type yes and
then press Enter.

5. When you are finished with the installation you can delete the download file to
recover disk space.

Note All Java configurations are handles via environment and
startup scripts, which eliminates potential conflicts with multiple
versions of Java installed on the server.

Installing Tomcat 4.04

Tomcat 4.04 is a J2EE compliant server that implements the Servlet 2.3 and JSP 1.2
specifications. The Public Health Information Network Message System, PHINMS,
comes with Tomcat version 4.04. PHINMS requires a J2EE compliant application
server. To obtain a list of approved application servers contact your PHINMS
representative. For any additional questions about Tomcat configuration see the on-line
documentation at:

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/index.html.

Last Updated 06/03/2003 7

To Install Tomcat 4.04

The following procedure shows you how to install Tomcat 4.04.

1. Copy the jakarta-tomcat-4.0.4.zip file from <XXXXXX> on the PHINMS
software CD to <installedPath> location on disk. The directory structure

jakarta-tomcat-4.0.4 is be created when you expand the file.

2. Using WinZip or PKZIP extract jakarta-tomcat-4.0.4.zip into you

<installedPath> directory.

3. For Windows, edit the catalina.bat file and for Linux edit the catalina.sh file in

<installedPath>\jakarta-tomcat-4.0.4\bin\. Modify the following

reference your installation of the Java Runtime Environment. If the entry

doesn’t exist, add it.

For Windows: set JAVA HOME=<installedPath>\java\j2rel.4.0 03

For Linux: JAVA_HOME=<instal ledPath>/java/j2rel.4.0_03

4. The basic Tomcat 4.04 installation is now complete. Follow the steps in To

Start Tomcat.

To Start Tomcat

Execute the following script to start Tomcat 4.04.

For Windows:

<installedPath>\jakarta-tomcat-4.0.4\bin\catalina.bat start

For Linux:

<instal ledPath>/jakarta-tomcat-4.0.4/bin/catalina.sh start

Follow the steps in To Stop Tomcat.

Last Updated 06/03/2003 8

To Stop Tomcat

Execute the following script to stop Tomcat 4.0.

For Windows:

<installedPath>\jakarta-tomcat-4.0.5\bin\catalina.bat stop

For Linux:
<installedPath>/jakarta-tomcat-4.0.4/bin/catalina.sh stop

Follow the steps in To Test Your Installation.

To Test Your Tomcat Installation

Go to the following URL. If the page displays, your installation of Tomcat 4.04 was
successful:

http://localhost:8080/

For more information about configuring and running Tomcat 4.04 go to the following
web site:

http://jakarta.apache.org/tomcat/

Follow the steps in To Configure SSL for Tomcat.

To Configure SSL for Tomcat

To configure SSL support on Tomcat 4.04, do the following:

1. Execute the following command to create a certificate keystore:

For Windows:

<installedPath>\j2rel.4.0_03\bin\keytool -genkey -alias tomcat -
keyalg RSA \
-keystore <installedPath>\keystores\tomcat

Last Updated 06/03/2003 9

For Linux:

<installedPath>\j2rel.4.0_03/bin/keytool -genkey -alias tomcat -
keyalg RSA \
-keystore <installedPath>\keystore\tomcat

2. To specify a different location or filename, add the -keystore parameter,
followed by the complete pathname to your keystore file, to the keytool
command in step 1.

3. To simplify keystore management, keep all keystores in the directory
<instal ledPath>/keystores. Put this new location in the server.xml
configuration file as described below. If the —keystore parameter is omitted, the
keystore will be created under the JRE security directory.

Note : Use the keytool utility to create a certificate only during
testing. You need to get an official certificate from a certified
certificate authority (CA) when you move your application to a
production environment.

4. After executing the command in step 1, you will be prompted for the keystore
password. The default password is changeit. All letters are lower case. You can
create a custom password if you want. If you create a custom password, you need
to specify the it in the server.xml configuration file as described later.

5. You will be prompted for general information about the certificate, such as
company, contact name, and so on. This information is displayed to users who
access a secure page in your application, so make sure the information is
complete, clear and specific. Do not use abbreviations. Completely spell the
names of cities, States and so on.

6. You will be prompted for the key password, the password specifically for this
Certificate. (Other certificates may be stored in the same keystore file.) The key
password must be the same as the keystore password.

You now have a keystore file with a Certificate that can be used by your server.

Note The certificate will be extracted and loaded into the sender’s
TtrustedStore keystore. See the Client Installation and
Configuration guide for details.

7. Uncomment the SSL HTTP/1.1 Connector entry in
<installedPath>/conf/server.xml.

Last Updated 06/03/2003 10

nnector

gName=""org.apache.catalina.connector._http.HttpConnector"

port="8443" minProcessors="5" maxProcessors="75"
enablelLookups=""true"
acceptCount="10" debug=""0"" scheme="https' secure=""true'>
<Factory

className=""org.apache.catalina.net._SSLServerSocketFactory""

clientAuth="false" protocol="TLS"
keystoreFile="<instal ledPath>/keystores/tomcat’/>

ﬁgonnecto r>

N

8.

Restart the Tomcat 4.04 server using the stop and start procedures previously
listed.

Test the certificate installation by browsing the following URL:
https://localhost:8443/

Because you generated a test certificate without using a Certificate Authority
known by the browser, a pop-up window warning appears which reads Security
Alert and asks if you want to proceed. Accept this certificate to display the secure

page.

After you have received a valid certificate from a known Certificate Authority this
warning will not be displayed. When the Tomcat 4.04 home page is displayed you
have successfully installed SSL within Tomcat and the Tomcat 4.0 installation is
complete.

Installing the Message Receiver Servlet

The message receiver is a servlet that runs on a J2EE compliant application server. The
message receiver receives the ebXML message and after processing the message
envelope, performs message decryption and signature verification. After verification is
complete, the Message Receiver will either write the message to a queue or forward the
message payload onto an appropriate message handler.

Last Updated 06/03/2003 11

To Install and Configure the Message Receiver

To install and configure the Message Receiver do the following:

1. Copy the ebxml.war file from <XXXXXX> on the Public Health Messaging
Software’s CD to the <installedPath>\jakarta-tomcat-4.0.4\webapp directory.
Tomcat 4.04 will automatically expand the war file in a newly created ebxml
directory under webapps.

2. Edit the web.xml file in <installedPath>\jakarta-tomcat-4.0.4\webapps\
ebxmN\WEB-INF. Modify the <param-value> to point to the message receiver’s
configuration file. This file is usually found in the <installedPath>\config\
directory.

<servlet>
<servlet-name>
receiver
</servlet-name>
<servlet-class>
gov.cdc.nedss.services.filerecv._ReceiveFileServlet
</servlet-class>
<init-param>
<param-name>receiverConfig</param-name>
<param-value>{instal ledPath}\config\receiver.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>
receiver
</servlet-name>
<url-pattern>
/receiver
</url-pattern>
</servlet-mapping>

3. The web.xml file contains a servlet-mapping entry for the message receiver. The
URL default value is /receiver. Update this value if you require a different URL

mapping.

4. Follow the instructions in To Set Up the Message Receiver Directory.

Note: The receiver.xml file is described in detail later in this
document.

Last Updated 06/03/2003 12

To Set Up the Message Receiver Directory

Use the following structure for the message receiver directory:

cmds

config —— CPA
keystores
<installedPath>

filedescriptors

logs

incoming

Directory Description

cmds Includes utilities required to support the operations of the system
such as the password cipher and pbe encryption programs.
config Includes all the configuration scripts. Also includes the CPA

directory, which contains all the Collaborative Protocol Agreements.

keystores Contains all the keystore files that support the encryption.
filedescriptors Contains the file descriptors files used in file-based transfers.
logs Contains the log files.

incoming Contains the files that have been received in a file-based transfer.

Installing the File-Based Message Handler

You do not have to install the file-based Message Handler. It is optional. It is delivered
with the Public Health Information Network Messaging System as an example Message
Handle and you can use it to test the installation of the Message Receiver.

The file-based Message Handler receives the message from the Message Receiver and
writes the payload to a file. The Message Handler should be installed on the same
computer as the Message Receiver to eliminate an intruder’s ability to eavesdrop on
communication between them. Enforce firewall rules to protect the Message Handler
from direct access from any internal or external computer.

Last Updated 06/03/2003 13

To Install the File-Based Message Handler

To install and configure the Message Handler do the following:

1. Copy the messagehandler.war file from <XXXXXX> on the PHINMS software
CD to the <installedPath>\jakarta-tomcat-4.0.4\webapp directory. Tomcat
automatically expands the war file in a new messagehandler directory under
webapps.

2. Edit the web.xml file in <installedPath>jakarta-tomcat-4.0.4\webapps\
messagehandler\WEB-INF. Modify the <param-value> to point to the Message
Receiver’s configuration file, which is usually in the “<installedPath>\config\”
directory.

<servlet>
<servlet-name>
messagehandler
</servlet-name>
<servlet-class>
gov.cdc.nedss.services.messagehandler .MessageHandler
</servlet-class>
<init-param>
<param-name>receiverConfig</param-name>
<param-value>{installPath}\config\receiver._xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

The web.xml file contains a servlet-mapping entry for the Message Handler. The
default value of the URL is /messagehandler. This URL will be used in the route
map to route an incoming service/action to this Message Handler.

<servlet-mapping>
<servlet-name>
messagehandler
</servlet-name>
<url-pattern>
/messagehandler
</url-pattern>
</servlet-mapping>

3. After installing and configuring the Message Handler, add an entry to the
Message Receiver’s servicemap.xml file to route messages to the Message
Handler. Use the To Create a Service Map for the Message Handler
procedures in the following section.

Last Updated 06/03/2003 14

To Create a Service Map for the Message Handler

The servicemap.xml file maps an incoming service/action to specific Message Handlers.
You need to add a service entry for the file-based Message Receiver. Do the following
procedure to create a service map for the Message Handler servlet.

1.

Add a unique name for your service using the <Name> tag. This name is used to
log information in the log files.

Add a type for your service using the <Type> tag.

The Type attribute tells the Message Receiver the type of Message Handler. The
Message Receiver supports web-based Message Handlers such as servlets, JSPs,
ASPs and CGI. The Message Receiver establishes a HTTP connection with the
web Message Handler. For more details see the Configuring Queues section in
this document.

Add an action name using the <Name> tag within the <Action> tag.

The Message Receiver uses the <Name> tag in the servicemap.xml file to an
action name to an associated action URL.

Add an URL using the <Url> tag within the <Action> tag.

This tag defines the URL of the Message Handler that will be initiated when this
Action is requested. In the following example a request with an action of
receiveFile will be mapped to the Servlet’s URL,
http://server:port/messagehandler.

<Service>
<Name>FileReceive</Name>
<Type>Servlet</Type>
<Action>
<Name>receiveFile</Name>
<Url>http://server:port/messagehandler</Uril>
<Argument> </Argument>
</Action>
</Service>

5. Optionally you can add an argument to your Action using the <Argument> tag.

It is used to pass name-value-based parameters to the Message Handler.

Last Updated 06/03/2003 15

Configuration Overview

This section provides an overview of the configuration of the Public Health Information
Network Messaging System, describes the software components and explains how to
configure the components to accept and handle messages.

The main component of the system is the Message Receiver. The receiver is a servlet that
accepts incoming messages. After the servlet has accepted a message it will write the
message directly into a worker queue or it will forward the message to a Message
Handler.

The Message Handler receives the message from the Message Receiver and performs a
task on the payload. The task performed by the Message Handler may be simple such as
writing the payload to disk or complex such as calling a data transformation engine to
insert data into a public health information system.

A file-based Message Handler is delivered with the Public Health Information Network
Messaging System. The file-based Message Handler is a servlet that writes the payload
directly to disk. This simple Message Handler is used throughout the configurations in
this section

The file-based Message Handler provides a straightforward method to test the installation
and configuration of the system. You can test features in the system incrementally by
using the file-based Message Handler. In a production environment, you do not have to
use the file- based Message Handler. It is optional.

Last Updated 06/03/2003 16

Message Receiver and File-Based Message Handler Configuration Files

Configurations for the Message Receiver and file-based Message Handler are maintained
in five XML configuration files.

File Name Description

web.xml A standard Java configuration file for web modules. The Message
Receiver servlet and servlet mapping entries may need modification
to reflect specific environment settings such as install directory.
Also, security constraint tags may need to be created if the web
container security is implemented.

receiver.xml The main configuration file for the Message Receiver. It contains
references to application directories, settings, and certificates.

servicemap.xml Maps incoming service requests with specified Message Handlers.

gueuemap.xml Maps a queue to a database and its associated queue table.
Configuration of the queuemap.xml file is optional. It must be
configured only when the Message Receiver is configured to write
messages into queues.

passwds.xml Contains system passwords including passwords to access
certificates in keystores. The passwds.xml file is encrypted before
deployment on a production server. See the Password Utilities
section in this document for more information on password
encryption.

After configuring the software to accept and handle messages, configure the
Collaboration Protocol Agreements (CPAS) for each partner that will send messages to
the system.

Last Updated 06/03/2003 17

Configuring the web.xml File

The web.xml file describes the Message Receiver’s servlet attributes, mappings and,
optionally, security constraints. The web.xml file is packaged within the ebxml.war file.
In a Tomcat deployment, the file can be found under Tomcat’s webapps directory in the
expanded /ebxmI/WEB-INF directory.

The deployed web.xml file contains a servlet entry for the Message Receiver. This entry
maps a servlet name, receivefile, to the servlet class,
gov.cdc.nedss.services.filerecv.ReceiveFileServlet. This is the actual Java class that will
be instantiated by the web container. The Message Receiver servlet entry contains a
parameter called receiverConfig. This parameter points to the Message Receivers’
configuration file, receiver.xml.

<servlet>
<servlet-name>
receivefile
</servlet-name>
<servlet-class>
gov.cdc.nedss.services.Ffilerecv.ReceiveFileServlet
</servlet-class>
<init-param>
<param-name>receiverConfig</param-name>
<param-value>C:/tomcat4/ebxml/Config/receiver.xml</param-value>
</init-param>

<load-on-startup>2</load-on-startup>
</servilet>

Last Updated 06/03/2003 18

Servlet Mapping Entry

The web.xml file contains a servlet-mapping entry that maps a URL to a Message
Receiver servlet. The server’s end point for a message exchange will consist of protocol,
server name, port and the URL entry in the web.xml servlet mapping. The default value
is receivefile. Set the load on the startup parameter to a number greater than the Message
Handler load on startup parameters. This allows servlet-based Message Handlers to
initialize before the Message Receiver initializes.

<servlet-mapping>
<servlet-name>
receivefile
</servlet-name>
<url-pattern>
/receivefile
</url-pattern>
</servlet-mapping>

Security Constraints

Optionally, security constraints can be added to the web.xml file to support basic, form
and certificate authentication. Ideally, use the web proxy layer to manage authorization.
This level of abstraction ensures system integrity by isolating the Message Receiver
(ebXML Receiver) layer. If you are unable to place the ebXML receiver software behind
a web proxy and require configuration of authorization parameters at the application
server layer, see Tomcat documentation to learn more about Tomcat authentication
configuration.

Configuring the receiver.xml File

The receiver.xml file is the Message Receiver’s main configuration file. This section
covers the configuration of the following system settings:

= Deployment Directories = Party Id of the receiver

= System Logging Level = Location of servicemap.xml file.
= Password File Cipher Key = Keystore Information*

= Location of CPAs « Trusted Keystore Information*
= Location of passwords file ** = Domain Settings

= Logging directory = Timeout Settings

= Queue Mappings = Database Pools

* For more information on the uses of the keystore and trusted

Last Updated 06/03/2003 19

keystore see the Security section.

** For more information on password file configuration see the Security section.
The ebXML distribution contains utilities to encrypt and to decrypt the
password file and to create cipher keys.

Last Updated 06/03/2003 20

Variables in the receiver.xml File

The following table describes the variables in the receiver.xml file:

Variable Description

logDir The directory in which the Message Receiver servlet
writes log files. The directory must be an existing
directory on the server. The default value is
<installPath>\logs

logLevel The logging level of messages within the log file.
Supported logging levels include: none, error, info,
detail, and messages. The amount of log information
written to the file increases as the level moves from
none to messages. At the messages level all possible
logging messages are written including the contents of
the messages. The default value is info.

maxLogSize The maximum size of a log file. After the size limit is
reached the process will stop writing to the log. The
default value is 100 megs.

logArchive Values are true or false. If true, the process will archive
log files when they reach their size limit and then start a
new log file. The default value is true.

incomingDir The system looks in this directory for incoming
messages when the system is configured for file-based
polling. If file-based polling is not being used the
parameter can be left blank. The default value is
<installPath>\incoming.

myPartyld The Message Receiver’s party Id. The value of the party
Id must be the same as the Message Receiver's party Id
in the CPAs. For example, the party Id for the Center for
Disease Control is CDC. Make sure the party Id for the
State or agency is unique.

cpalocation The directory to the CPAs. All CPAs must be retained in
this directory. The directory can be any directory
accessible by the servlet. The default directory is
<installPath>\config\CPA.

serviceMap The full path name to the service map. The service map
contains mappings between actions and Message
Handlers. The default directory and file name is
<installedPath>\config\servicemap.xml.

passwordFile Full path to the encrypted passwords file. The clear text

Last Updated 06/03/2003 21

Variable

Description
password file should not be deployed in a production
environment. The default directory and file name is
<installedPath>\config\passwd

keyStore

Full path of the Message Receiver's Java keystore. The
key store maintains the Message Receiver’s private key
and associated certificate in PKCS12 format. This
information is used to enable encryption between the
Message Sender and the Message Receiver. See the
Security section for more information on managing
certificates and keystores.

keyStorePasswd

A pointer to the Message Receiver's Java Keystore
password within the Message Receiver's encrypted
password store. The value of this entry is not the
keystore password itself. It is the name of the tag within
the password file. The value of this tag within the
passwords file contains the actual password. See
Appendix B for configuration of the passwords file.

trustStore

Full path of the Message Receiver's trusted store. The
trusted store maintains trusted public keys in JKS format
for the sending parties that are using encryption and
digital signatures. See the Security section for more
information on the managing certificates and keystores.

trustStorePasswd

A pointer to the Message Receiver's trusted store
password within the Message receiver's encrypted
password store. The value of this entry is not the
password to the trusted store itself; it is the name of the
tag within the password file. The value of this tag within
the passwords file contains the actual password. See
Appendix B for configuration of the passwords file.

signatureRequired

Values are true or false. When set to true, the message
must have a signature. If it doesn’t have a signature the
message will fail. When the variable is set to false, which
is the default, signatures are verified when present and
the messages without signatures are accepted.

signingCertsLocation

The directory in which signed certificates are stored. The
directory can be any directory accessible by the servlet.
The default directory is <installPath>\config\CPA.

This directory is used when the server is communicating
with a Message Sender that does not send signed
certificates within digitally signed messages.

In this case, the Message Receiver looks in the
signingCertsLocation directory for the Message
Sender’s signed certificate. If a certificate is found, the
Message Receiver uses the public key to decrypt the

Last Updated 06/03/2003

22

Variable

Description

signed hash. If the hash matches the hash computed on
the Message Receiver side, the identity of the Message
Sender is verified.

You do not need to use the signingCertsLocation
when communicating with the CDC's ebXML client
software. The CDC's ebXML client software sends the
client's certificate information in the keyInfo of the
message. The Message Receiver uses this key to
interrogate the computed hash.

queueMap

Full path to the queue map XML file. The queue map file
maps a message to a queue by matching the message’s
argument to the queue name. The default directory and
file name is <installedPath>\config\queuemap.xml

payloadToDb

Possible values are true or false. When true, the system
places the payload in a BLOB field in a table. When
false, the system writes the payload out to a file. The file
will reside in the specified outgoing directory. The default
value is false.

key

Substitution cipher key. The key and seed are used to
mask the password store’s password. Because the
Message Receiver is a service, it is inefficient to require
the system administrator to enter a password at every
restart.

This feature allows the system to access the encrypted
passwords file without keeping any passwords in clear
text on the production environment. See Appendix D for
more information about the password cipher
functionality.

seed

Cipher text obtained by encrypting the password to the
encrypted password store using the substitution cipher
key. See Appendix D for more information about the
password cipher functionality.

usePersistentCache

When true, the file uses a persistent cache to detect
duplicate messages.

applevelCaching

When true, recordld field is used to detect duplicates.
When false, the conversationld is used to detect
duplicates.

persistentCache.dbType

Type of database used by the persistent cache such as
sqlserver or oracle.

persistentCache.jdbcDriver

JDBC driver for the persistent cache.

Last Updated 06/03/2003

23

Variable Description

persistentCache.databaseUrl Databae URL for the persistent cache.
persistentCache.databaseUser Database user name for the persisten cache.
persistentCache.tableName Table name for the persistent cache.

persistentCache.cacheEntryAgeHours | Maxium age for a persistent cache entry.

Database Pooling

To enhance system performance, the Message Receiver supports database pooling. The
system can support multiple database connection pools. The receiver.xml file stores
connection pool information in its <databasePool> tag, which can contain one or more
<database> tags. Each <database> tag represents a database pool. The following values
must be set for each database tag.

Database Tag Values

Tag Value Description

databaseld The uniqgue name for the database connection pool. The database Id is
referenced in the queue map. The service map uses the databaseld to map
the queue to a specific database.

dbType Designates the type of database. These databases are supported: oracle,
sqlserver, mysql, access.

poolSize The number of database connections to open. When setting the pool size
make sure the system can handle the maximum client load while keeping
enough memory available.

jdbcDriver The type of JDBC driver. The JDBC driver should be appropriate for the type
of database such as com.microsoft.jdbc.sqlserver.SQLServerDriver for
Microsoft SQL Server and oracle.jdbc.OracleDriver for Oracle.

databaseUrl The URL to the database. The format of the URL depends on the type of
database and driver used such as
jdbc:microsoft:sqlserver://host:portnumber;DatabaseName=database
for Microsoft SQL Server and jdbc:oracle://host:port:sid for Oracle.

databaseUser A pointer to the database user entry in the Message Receiver's encrypted
password store. The value is not the database user. It is the name of the tag
within the password file. The value of the tag within the passwords file
contains the actual database user name. See Appendix B for the password

Last Updated 06/03/2003 24

Tag Value Description
file configuration for both the databaseUser and databasePasswd entries.
databasePasswd | A pointer to the database password entry in the Message Receiver's

encrypted password store. The value is not the database password. It is the
name of the tag within the password file. The value of the tag within the
passwords file contains the actual database password. See Appendix B for
the password file configuration for both the databaseUser and
databasePasswd entries.

Last Updated 06/03/2003 25

Configuring the servicemap.xml File

The ServiceMap file maps a Service and Action attribute pair to the URL of a Message
Handler. The ServiceMap file contains the name of the service, the service type, the
action name, the URL of the Message Handler and the arguments that must be sent to this
URL if the Service and Action attribute pair are invoked.

=ServiceMap>
=Servicer
=MName =Ronis ey < Mame=
=TyperServlet-/ Type-
“Action=
=HName>=end-= /MName =
=Url=http: F1E83_111.1_164:2080 /router/roukter= TIr 1=
=AY cpmettract on=setd < LAY i et
< Aot ion>
=/ Bervice=
=/ Servicallap-

The Message Sender specifies the Service and Action in the message. The Message
Receiver retrieves the Service and Action from the request then uses the service map to
find the URL of the Message Handler and any arguments that need to be sent to this
URL.

Configuring the Collaboration Protocol Agreement

The Collaboration Protocol Agreement, CPA, specifies the conditions under which the
parties will conduct transactions. They are standard ebXML 2.0 documents that describe
unique party identifiers, transport protocol, security constraints and end points URLs and
SO on.

These CPAs are ebXML compliant files that describe the action between the Message
Sender and the Message Receiver. Each party, the Message Sender and the Message
Receiver, must have a copy of the CPA. They use the CPA to find endpoints and
transport related information such as protocol and security settings.

The Message Sender references the routemap.xml file to lookup a corresponding CPA
for a party and then the Message Sender retrieves the Message Receiver’s end point and
transports information from the CPA.

Similarly, the Message Receiver uses the party ID of the Message Sender to look up the
associated CPA and then the Message Receiver uses the CPA to validate the identity of
the Message Sender.

Last Updated 06/03/2003 26

Partylnfo Segments

The CPA contains two Partylnfo segments, which describe the Message Sender and the
Message Receiver.

« Message Sender PartyInfo
» Message Receiver Partylnfo

Message Sender PartyInfo

The Message Sender Partylnfo segment contains a Partyld, a unique number such as a
DUNS number, which identifies the Message Sender. The Message Sender and the
Message Receiver have agreed on which numbers they use as Partylds.

Message Receiver PartyIinfo

The Message Receiver Partylnfo segment is similar to the Message Sender Partylnfo.
The segment contains a PartylD, a unique number, such as a DUNS number, which
identifies the Message Receiver. The Message Sender and the Message Receiver have
agreed on which numbers they use as PartylDs.

Transport Sub-segment

The Message Sender and Message Receiver Partylnfo segments also contain a sub-
segment, called Transport. The Transport sub-segment contains these attributes:

Transport Description

sendingProtocol The protocol used to send messages. Values are HTTP and
HTTPS.

receivingProtocol The protocol used to accept messages. Values are HTTP and
HTTPS.

Endpoint URI The URI or endpoint of the party.

transportSecurity The TransportSecurity sub-tree contains the following custom
attributes: authentication types Values are none, basic, custom,
sdn, clientCert.

Last Updated 06/03/2003 27

Authentication Types

For each of the four types of authentication, there is a descriptor block that specifies the
configuration of that authentication:

Authentication Type Description

sdnAuth This block is read if authenticationType is set to sdn. The
attributes of this block include the sdnConfig file (full path name of
the sdn properties file and the sdnPassword. The sdnPassword
value in the CPA is actually the name of a password variable within
the encrypted passwords file.

clientCertAuth This block is read if authenticationType is set to clientCert. The
attributes of this block include the config file, the full path name of
the properties file.

customAuth This block is read if authenticationType is set to custom. The
attributes of this block include the customLoginPage, which is the
URL of the login page, relative to the end-point. It also contains
publicParams and secretParams attributes. Both these
parameters are name-value pairs. The public params are read
directly from the CPA, whereas the values within secretParams
are the names of entries within the encrypted password file.

basicAuth This block is read if authenticationType is set to basic. The
attributes in this block include indexPage (relative URL of the first
page to be loaded). It also includes basicAuthUser and
basicAuthPasswd, which are both references to entries within the
encrypted password file.

For an example of the CPA see the appendix in this document.

Last Updated 06/03/2003 28

Configuring Message Handlers

Asynchronous and Synchronous Message Handling

The Message Handler can handle messages synchronously or asynchronously. In a
synchronous exchange, the Message Handler executes logic against the received
message and returns application level status to the ebXML client (Message Sender).

In an asynchronous exchange, the Message Handler writes the message to permanent
storage. In an asynchronous exchange, it is the responsibility of a back-end health system
to perform work against the message. The application has the responsibility of sending
an application level acknowledgement back to the Message Sender.

Message Handlers can be any web-based component such as a servlet, JSP, ASP, CGI
and so on that can be called by the Message Receiver. The Message Handler receives the
message from the Message Receiver and then performs work on the message.

The following diagram illustrates the message flow in synchronous mode:

Message
ebXML Receiver Synchronous Handler1
(Servlet)
D Message
Transport Handler2
Queue (Servlet)
ServiceMap
(Service
specification)

1. The ebXML Receiver (Message Receiver) receives an incoming message from
the ebXML Client (Message Sender).

2. The ebXML Receiver parses the envelope, decrypts the payload and then verifies
the signature.

3. The ebXML Receiver looks in the servicemap.xml file for a service entry
matching the Service/Action specified in the incoming message.

Last Updated 06/03/2003 29

If the entry type is Servlet, the ebXML Receiver sends the payload to a Message
Handler.

4. The ebXML Receiver waits for a response from the Message Handler and returns
the Message Handler’s response to the ebXML client.

Configuring the Service Map

A Message Handler’s service entry in the service map must specify servlet as the service
type. The service type for a Message Handler is the program that receives and handles the
message at that URL but it does not have to be a servlet. It can also be an ASP or CGI
script.

A servlet service has an Action tag. The Action tag has an URL tag which maps to the
Message Handler’s end point. The Message Receiver calls this URL to invoke the
Message Handler. In the following example, a request with an action of
processLRNMessaage is mapped to the http://localhost:8080/Irn/processMessage URL.

<ServiceMap>

<Services
<Name>BT</Name>
<Type>Servlet</Type>
<Actions>
<Names>processLRNMessage</Name>
<Urls>http://localhost:8080/1lrn/processMessage</Url>
<Argument>argl=datal&arg2=data2</Argument>
</Actions>
</Service>
</ServiceMap>

Note: Install the Message Handler and the Message Receiver on the
same computer to eliminate an intruder’s ability to eavesdrop on
communication between them. Enforce firewall rules to prevent
internal or external computers from directly accessing the Message
Handler.

The Argument tag allows the programmer to send additional information to the Message
Handler. Use the HTTP query string format for arguments such as
argl=datal&arg2=data2. Use URL encoding for special characters such as underscores
and dashes.

Last Updated 06/03/2003 30

Last Updated 06/03/2003

31

Configuring Queues

The Public Health Information Network Messaging System uses queues to handle
messages. The ebXML Receiver (Message Receiver) handles the requests. No external
Message Handlers are called in this configuration. A system using queues is
asynchronous in nature. The application level status is not sent in the initial
request/response exchange between the ebXML Client and ebXML Receiver.

The following diagram illustrates the ebXML Receiver’s operations in asynchronous
mode:

_CW;R? Receiving (Polling)

Application1

Queuel
N—_
M ebXML Receiver Asynchronous
Services
Wor;er

Receiving (Polling)

Queue?2 Application2
~_
Transport ServiceMap QueueMap
Queue (Service specification) (Table specification)
—

receiver.xml
(Database specification)

1. The ebXML Receiver (Message Receiver) receives the incoming message from
the ebXML Client (Message Sender).

2. The ebXML Receiver parses the message envelope, decrypts the payload, and
verifies the signature.

3. The ebXML Receiver looks up the ServiceMap in the servicemap.xml file for an
entry that matches the Service/Action in the ebXML envelope of the incoming
message.

4. If the entry type is WorkerQueue, the ebXML Receiver writes the payload to a
set of worker queues, which are defined in the servicemap for that Service/Action.

5. The ebXML Receiver sends a synchronous response to the ebXML client, which
consists of the transport status only.

6. Receiving (Polling) applications poll their individual worker queues for incoming
messages and then the Receiving (Polling) application sends an application level

Last Updated 06/03/2003 32

response to the ebXML Client (Message Sender), which originally sent the
message.

Configuring the Service Map

Specify WorkerQueue as the service type for the service entry in the service map.

<ServiceMap>

<Service>
<Name>Servicename</Name>
<Type>WorkerQueue</Type>
<payloadToDisk>true/false</payloadToDisk>
<textPayload>true/false</textPayload>
<Action>
<Name>Receive</Name>
<QueueId>QID123</Queuelds>
<QueueId>QID456</Queuelds>

</Actions>
</Service>
</ServiceMap>

The entry of type WorkerQueue maps to one or more queue I1Ds. The QueuelDs in the
WorkerQueue are defined within a QueueMap shown below. There are two additional
fields in the service element for the WorkerQueue service type, payloadToDisk and
textPayload.

When the payloadToDisk flag is set to true, the incoming payload is written to disk
instead of to the database field. In this case the name of the local file on disk is stored in
the worker queue table.

When the textPayload flag is set to true, the payload is written to the

payloadTextContent field. When the textPayload flag is set to false, the payload is
written to the payloadBinaryContent field in the worker queue.

Last Updated 06/03/2003 33

Configuring the Queue Map

The queue map is a definition file that resides on the Message Receiver’s configuration
folder and is used to map worker queues to database/table combinations.

The following example queuemap contains the definition of three queue-lds: QID123,
QID456 and QID789. Each Queueld maps to a database and a tablename. The
tablename corresponds to a table that conforms to the worker queue schema. The
databaselDs are defined in the receiver.xml file.

<QueueMap>
<workerQueue>
<queueId>QID123</queueld>
<databaseId>sglserver2</databaseId>
<tableName>workerqueue</tableName>
</workerQueue>
<workerQueue>
<queuelId>QID456</queueld>
<databaseId>sglserverl</databaseId>
<tableName>workerqueue</tableName>
</workerQueue>
<workerQueue>
<queueId>QID789</queueld>
<databaseIds>oracleserverl</databaseIds>
<tableName>workerqueue</tableName>
</workerQueue>
</QueueMap>

See the Receiver Configuration section for more information about configuring database
pools.

Last Updated 06/03/2003 34

Worker Queue Table Schema

The following example illustrates the schema for a worker queue. For examples of the
SQL Server and Oracle DDL scripts see Appendix C:

Field Description Data Type
recordld Unique ID (integer), auto- Required
incremented, of the record inthe | SQL Server: Integer,
table. This is also the primary key | Identity=Yes, Identity
of the table. Increment=1
Oracle: Integer (20), not null
messageld Application level message Optional

identifier.

SQL Server: varchar (255),
null

Oracle: varchar2 (255), null

payloadName

File name of payload as specified
by the Message Sender.

Optional

SQL Server: varchar (255,)
null

Oracle: varchar2 (255), null

payloadBinaryContent

Image/BLOB field, which is
written by the Message Receiver
servlet.

Optional

SQL Server: Image data type,
null

Oracle: BLOB data type, null

payloadTextContent

Text/CLOB field that is used when
the textPayload value in the
servicemap entry is true.

Optional

SQL Server: Text data type,
null

Oracle: CLOB data type, null

localFileName

This field is used when the file is
on disk instead of written to a
database field.

When the payloadToDisk value
in the servicemap entry is true.

Optional

SQL Server: varchar (255,)
null

Oracle: varchar2 (255), null

service

The ebXML service.

Required

SQL Server: varchar (255,)
null

Oracle: varchar2 (255), null

action

The ebXML action.

Required

SQL Server: varchar (255,)
null

Oracle: varchar2 (255), null

arguments

Arguments specified by the
Message Sender.

Optional

SQL Server: varchar (255,)
null

Oracle: varchar2 (255), null

fromPartyld

Party ID of the sending party.

Required

SQL Server: varchar (255,)
null

Oracle: varchar2 (255), null

Last Updated 06/03/2003

35

Field
messageRecipient

Description

Identifies the Message Recipient,
which is specified by the Message
Sender in the transportQ_Out
queue.

Data Type
Optional
SQL Server: varchar (255,)
null
Oracle: varchar2 (255), null

errorCode Error code Optional
SQL Server: varchar (255,)
null
Oracle: varchar2 (255), null
errorMessage Error message Optional

SQL Server: varchar (255,)
null

Oracle: varchar2 (255), null

processingStatus

Status of this record. The initial
value of this field when a record is
created is queued

Optional

SQL Server: varchar (255,)
null

Oracle: varchar2 (255), null

applicationStatus

The applications processing
status.

Optional

SQL Server: varchar (255),
null

Oracle: varchar2 (255), null

encryption

The value is yes if the payload is
encrypted and no if it isn’t.

Optional

SQL Server: varchar (10,) null

Oracle: varchar2 (10), null

receivedTime

Time when payload was received
in UTC format such as
2001-10-01T16:01:01.

Optional

SQL Server: varchar (255),
null

Oracle: varchar2 (255), null

lastUpdateTime Time when record was last Optional
updated in UTC format such as SQL Server: varchar (255),
2001-10-01T16:01:01 null
Oracle: varchar2 (255), null
processld Identifies the record’s latest Optional

process.

SQL Server: varchar (255),
null
Oracle: varchar2 (255), null

Last Updated 06/03/2003

36

To Configure the Queues

To configure the queues for the PHINMS do the following:

1 Create the worker queues.
See the DDL and SQL Server scripts in Appendix C.
2 Add the DatabasePool entries to the servicemap.
See the example in the blank section.

3 Add the QueueMap.
See the example in the blank section.

4 Add the ServiceMap entries for the queues.
See the example in the blank section.

5 Add the database user and password entries to the encrypted passwords file and
reference them from the DatabasePool entries.

6 Add the database drivers, JDBC, to the ebXML Receiver WEB-INF\lib\ folder
for SQL Server or Oracle.

Last Updated 06/03/2003 37

Installing the Route-Not-Read Message Handler

Route-not-Read Servlet

The route-not-read servlet contains the following tables and configuration files:

Tables
» Messagebins — for reading and writing messages.
- Broadcast — defines broadcast lists.
« Users — defines authorized route-not-read user 1Ds.
« PartylD_User — maps valid partylDs and route-not-read UserIDs.

Configuration Files
- RouterConfig.xml — contains the router servlet’s configuration parameters

« Web.xml - contains the deployment descriptor for the router servlet, which
contains the RouterConfig.xml file.

Messagebins Table

The router servlet writes and reads to the messagebins table described below:

Field Description

recordld Integer.

fromPartyld Party ID of the sending party.

messageRecipient Message Recipient’s identifier.

messageRecordld RecordID of the message.

messageApplicationld Identifier that is specified by the application that uses the
PHINMS system.

arguments Arguments sent by the Message Sender, which are conveyed
to the Message Handler and to the route-not-read Message
Recipient.

payloadFile File name of the payload, as specified by the sender

localFile File name of the payload, as stored on disk by the route-not-
read handler

processingStatus Flag which indicates the processing status:
written — Message was written by the router handler and is
ready to be read.
read — Message has been read by a poll request.

receivedTime Time when message was received.

pickedupTime Time when message was picked up.

Last Updated 06/03/2003 38

Broadcast Table

The broadcast table is used to set up broadcast lists. Their function is similar to an e-mail
distribution list, a message is sent to two or more addresses.

For example:

If a broadcast list is name=sepcialinterestgroup and addresses="john, jill”, then
when a message is sent with messageRecipeint=specialinterestgroup, both john
and jill will receive a copy of the message.

Field Description
name Broadcast list name
addresses Comma separated list of user names
Users Table

Each user in the route-not-read system is identified by a unique user name. To use the
route-not-read system, the user’s identity must be present in the users table.

Field Description
name User name
description Optional description

Partyid_user Table

The partyid_user table maps a route-not-read user to an ebXML partyID, which can be
the same. However, several route-not-read users can have the same ebXML partylD. The
following table is used to validate send and poll requests, which means, it determines
whether the messageRecipient of the poll request corresponds to the correct ebXML
party ID. To use the route-not-read system, each route-not-read user must be mapped to
their partylD as shown below.

Partyld EbXML Party ID
user User name — the name as it appears in the users table.
sdnuser User key of the SDN user.

Last Updated 06/03/2003 39

routerconfig.xml

The routerconfig.xml file is an XML format configuration file, which specifies
configuration parameters of the router. This file contains the following parameters.

Field Description

dbType Database type: sqlserver or oracle

jdbcDriver JDBC Driver name

databaseUser Database user key —an index into the encrypted passwords
file.

databasePasswd Database password key — an index into the encrypted
passwords file.

passwordFile Password file name.

logLevel Logging level: none, error, info, detail, messages.

logDir Logging directory.

key Key used for substitution cipher. Together, the key and the
seed are used to determine the password to the passwords
file.

seed Seed used for substitution cipher

SdnAuth Indicates whether SDN authorization is used. Values are
True, False.

See Appendix J for an example of the routerconfig.xml file.

Last Updated 06/03/2003 40

Security

Security is a very important aspect of the Public Health Information Network Messaging
System. Managing security is vital to ensure the messages are confidential and their
integrity is preserved.

Java Keystores

A keystore is a repository of keys and certificates.” The KeyStore class is an engine class
that supplies well-defined interfaces to access and modify the information in a keystore.
You can have several implementations at the same time, with a different implementation
for each type of keystore.

Sun Microsystems provides a default implementation. It implements the keystore as a
file, which utilizes a proprietary keystore format called JKS. It protects each private key
with an individual password and protects the integrity of the entire keystore with another
password, which may be different than the individual password.

The JKS keystore type is used to store all trusted certificated within the TrustedStore.
Use the keytool utility, described later in this section, to manage information within the
JKS keystore type.

RSA Laboratories, along with other vendors such as Apple, DEC, Microsoft, and Sun
create the Public Key Cryptography Standards, PKCS, specifications. The functions of
the PKCS specifications vary and they address issues related to security and
cryptography. The PKCS12 Keystore type is used to store your site-specific keys and
certificates. You can use either Internet Explorer or Netscape browsers to manage the
information in this keystore type.

Last Updated 06/03/2003 41

To Manage the PKCS12 KeyStore using Internet Explorer

1. If you haven’t already, load your private key and certificate into the Internet
Explorer or Netscape browser.

2. Select Tools->Internet Options->Content->Certificates. Select the certificate
you want to export and then click Export.

3. A wizard appears. Click Next.
4. Select the Yes, export the private key check box and then click Next.

5. Select the Personal Information Exchange — PKCS12 option, and then select
the check boxes which read:

Include all certificates in the certification path if possible
Enable strong protection

6. Do Not select the Delete private key after export check box. It will delete your
private key from the store after you export it.

7. Click Next.

8. Specify the password for encrypting the file and then click Next.

This password is the new keystore password. This password will be encrypted in
the passwds.xml file using the pbe utility described in the Security section.

9. Specify the file name such as <installedPath>\keystores\ServerCert and then
click Next.

You will receive a message indicating the export was successful.

Last Updated 06/03/2003 42

To Manage the PKCS12 Keystore using Netscape Communicator

1. From the browsers main window click Security icon.
2. Click the Certificates->Yours link.

A window with a list of certificate serial numbers appears. If there is more than
one, view each certificate and then select the correct one.

3. Click Export.
A window appears.

4. Type the Netscape Communicator password for keystores. This is the same
password you used when you initially installed this key/certificate on the
Netscape browser.

A window appears.

5. Enter the keystore password to protect the data you are exporting and when the
next window appears, enter the password again to confirm it.

6. A browser window appears. Select the file name of the exported file and then
click Save.

Managing the Java Trust Store with Keytool

Keytool is a key and certificate management utility. You can use it to administer your
public/private key pairs and associated certificates, which are used in self-authentication.
Self-authentication is a process in which a person uses digital certificates to authenticate
his or her identity to other users, services, or data integrity and authentication services.
You can also use keytool to cache the public keys, in the form of certificates, of your
peers.

Last Updated 06/03/2003 43

Viewing the Trusted CA Certificates in the Java Trust Store

By default, this command prints a certificate’s MD5 fingerprint. When the -v option is
specified, the certificate is printed in a format that can be read by humans and it contains
information such as the owner, issuer, and serial number.

Command Syntax:

<javabin>keytool —-list —v —keystore <truststorefile> —storepass
<storepass>

Where:

- javabin: Path indicating the location where the Java binaries are stored on your
machine such as d:\jdk1.4\bin)

« truststorefile: File containing truststore such as cacerts.

. Storepass: Password to trust store

Example:

<installedPath>\java\j2rel.4.0 _03\bin\keytool —-list —keystore \
<instal ledPath>\keystores\tomcat —storepass changeit

Changing the Password of the Java Trust Store

Change the password to the Java Trust Store to protect the integrity of the keystore
contents. The new password is newpass, which must be at least 6 characters long.

Command Syntax:

<javabin>keytool -storepasswd -new <newpass> -keystore <truststorefile>
-storepass <oldpass>

Last Updated 06/03/2003 44

Where:

= javabin: Path indicating the location where the Java binaries are stored on your
machine such as d:\jdk1.4\bin)

« truststorefile: File containing truststore such as cacerts.
oldpass: Old password to trust store.

« newpass: New password to trust store.

Example:

<installedPath>\java\j2rel.4.0_03\bin\keytool —storepasswd —new
changeit2 \
—keystore <installedPath>\keystores\tomcat —storepass changeit

Importing a Certificate Authority Certificate to the Java Trust Store

Use the following command to read the certificate or certificate chain from the file
cert_file and store it in the keystore entry identified by alias. The certificate chain is
supplied in a reply in PKCS#7 format.

Command Syntax:

<javabin>keytool —import <alias> —trustcacerts —File <cert file> -
storepass <storepass> -keystore <truststore>

Where:
. javabin: Path indicating location where Java binaries are stored on your
machine such as d:\jdk1.4\bin
. truststorefile: File containing truststore such as cacerts.
storepass: Password to trust store.
Example:

<installedPath>\java\j2rel_.4.0_03\bin\keytool —import cacertl —
trustcacerts —file \
<instal ledPath>\keystores\changeit3.cer —storepass changeit \
—keystore <installedPath>\keystores\cacertl

Last Updated 06/03/2003 45

Exporting a Certificate from a Java Key Store

The following command reads the certificate associated with alias from the keystore and
stores it in the cert_file file.

Command Syntax:

<javabin>keytool —export <alias> —file <cert_file> -
storepass <storepass> -keystore <keystore>

Example:
<installedPath>\java\j2rel.4.0_03\bin\keytool —export \

—File <installedPath>\keystores\changeit3.cer —storepass

changeit \
—keystore <installedPath>\keystores\cacertl

Managing Passwords

Receiver Password File

All passwords are stored in an encrypted password file. You define the name of the
password file. It is referenced in the receiver.xml file with the <passwordFile> tag in
XML format.

Passwords referenced in the receiver.xml file are pointers to the XML tag in the
password file. The password itself is contained within the associated XML tags.

Example:

Receiver.xml

<keyStorePasswd> keyStorePass </keyStorePasswd>

<trustStorePasswd> trustStorePass™<(trustStorePasswd>
Password.xml

<keyStorePass> passphrase </keyStorePass>

<trustStorePass> changeit </trustStorePass>

Last Updated 06/03/2003 46

Because the Receiver is a servlet-based application and has no human intervention during
initialization, the password for the password file must be protected. A cipher key
generator is used to protect the password file’s password. Use the <key> and <seed> tags
are used to define the cipher text.

During the creation of the cipher text, enter a key value that will be used to generate the
cipher text. This key value can be any number. The larger the number the larger the seed
value generated. The <seed> tag references the actual cipher text for the password.

The Public Health Information Network Messaging System offers two utilities to manage
passwords; pbe.bat, which encrypts and decrypts the password file, and substitue.bat,
which creates the cipher text used to protect the password file. These commands are
defined in more detail in the Password Utilities section.

Password Utilires

Password Based 'Encryption (pbe)

The Password-Based Encryption command line utility, pbe.bat, encrypts and decrypts
resource files, such as the password files. These files hold references to all password
information throughout the system including passwords for Trusted KeyStore, KeyStore,
database, user name and password.

To Encrypt a File

1. Start the pbe utility by executing the following command:
<installedPath>\cmds\pbe.bat

2. Type the letter e to encrypt the file and then press Enter.

3. Type the name of the file you want to encrypt and then press Enter. This file
must be at lease 6 characters long and contain at lease one numeric digit.

4. Type the location you want to put the file and then press Enter.
5. Type the password and then press Enter.

To Decrypt a File

1. Start the pbe utility by executing the following command:
<instal ledPath>\cmds\pbe.bat

2. Type the letter d and then press Enter.

3. Type the name of the file you want to decrypt and then press Enter. This file
must be at lease 6 characters long and contain at lease one number.

Last Updated 06/03/2003 47

4. Type the location you want to put the decrypted file and then press Enter.
5. Type the password and then press Enter.

Last Updated 06/03/2003 48

Substitution Cipher Key Generator

Use the cipher key generator utility to generate cipher text for a password. The cipher
text- based password is used to protect the Message Receiver’s password file. The Cipher
Key utility requires a unique numeric key value that is used to generate the unique cipher
seed value. The key and seed values are placed in the receivers.xml configuration file.

To generate a cipher seed value do the following:

1. Start the cipher utility by executing the following command:
<installedPath>\cmds\substitute.bat.

2. Type the substitution cipher key and then press Enter. The key value must be a
numeric number at least 3 digit.

3. Type the password text you want to encrypt and then press Enter.

The encrypted value is displayed on the command prompt. Cut and paste this
value into the receiver.xml <seed> tag. The associated key value you enter
during the generation of the key will also need to be included in the receiver.xml
file using the <key> tag.

Authentication

The Collaboration Protocol Agreement specifies the authentication mode each route uses.
There are four mode types and all use the SSL transportation mechanism.

Mode Type Description

Basic Using basic authentication, the client sends the user name and
password, encoded in Base64 format, as part of the HTTP header.
The web server uses a user password database or it maps user
names and passwords to the underlying operating system. The
cookies that are returned from the login process are sent with
subsequent requests throughout the session.

Custom Using customized authentication, the client, the Message Sender,
logs in using a customized method, which may include login and
password fields. After logging in, the Message Receiver usually
installs cookies on the client. The client sends these cookies to the
Message Receiver in subsequent requests in the same session.

SDN The Centers for Disease Control and Prevention use the Secure
Data Networking security and public-key infrastructure. To use SDN,
obtain a User-1D and a client certificate, then install these on the
client. To access a resource on the SDN system, the client identifies
itself using its certificates and then performs authentication using the

Last Updated 06/03/2003 49

Mode Type Description

client certificates and passphrases. During authentication, the
Message Receiver installs cookies on the client. The client sends
these cookies to the Message Receiver in subsequent requests in
the same session. The user credentials control accesses to web
resources on the Message Receiver server.

Client Certificate- During the SSL exchange, the web server uses the client’s

Based certificate to verify that the client possesses the private key for the

Authentication public key certificate. If available, the web server contains a list of
approved client certificates. Only those clients on the list will be able
to access the web resources. Digital signatures prevent the
message from being rejected because of its origin.

Last Updated 06/03/2003 50

Encryption

Enabling SSL Authentication

SSL provides for encryption of a session, authentication of a server, and, optionally, a
client and message authentication.

SSL Authentication Flow

Receiver

Sender

Tomcat

) J

-

TrustedStore |«

To Enable SSL

SSL

Keystore

A

Servlet

TrustedStore

Keystore

To enable SSL authentication do the following:

1.

2.

3.

Execute the following command to export the Tomcat certificate, which was
generated during the Configuring SSL for Tomcat section.

<installedPath>\java\j2rel.4.0_03\bin\keytool -export -file

tomcat.cer \
-keystore <installedPath>\keystores\tomcat —alias

tomcat

Execute the following command to import the Tomcat certificate into your
sender’s Trusted Store.

<installedPath>\java\j2rel.4.0_03\bin\ keytool -import -

file tomcat.cer
-keystore cacerts -alias tomcat

Restart the sender application.

Last Updated 06/03/2003 51

Encryption

Asymmetric Encryption

Based on the configuration of the PHINMS Message Sender configuration, the Message
Sender obtains the information that needs encrypting, along with the LDAP attributes of
the message recipient, which include the LDAP server name, the base address, and the
recipient’s common name.

When the Message Sender receives the message from the database or file system it
performs a cache lookup for the recipient’s certificate. If a recent certificate for the
Message Receiver exists in the cache, it retrieves it from the cache and uses it. If the key
is not found in the cache, it queries the Verisign LDAP directory and obtains the Message
Receiver’s public key certificate.

After the Sender obtains the public key certificate, it retrieves the recipient’s public key
from the certificate .The Message Sender uses the XML Encryption library to perform
asymmetric encryption on the plaintext supplied.

Asymmetric Decryption

During asymmetric decryption, the Message Receiver receives the XML encrypted
message. The Message Receiver retrieves the private key of it’s asymmetric key pair
from the local Java keystore, and uses this key to decrypt the ciphertext using XML
encryption library.

Encryption Flow

Receiver
Servlet

TrustedStore TrustedStore

Keystore

Sender Tomcat

Keystore

LDAP Search

LDAP Search

il
|
I

Last Updated 06/03/2003 52

Enabling Encryption

To enable encryption do the following:

1. Obtain a valid certificate either through the CDC’s Secure Data Network
(SND) request or directly with Verisign at http://www.verisign.com.

2. Follow the steps in Managing PKCS12 Keystore to export your new key into
a PKCS12 keystore.

3. Copy the new keystore created in step 2 to <installedPath>\keystores.
4, Modify the <keyStore> tag in the receiver.xml file to the appropriate path

and file name created in step 2.

5. Modify the <keyStorePasswd> tag in the receiver.xml file to the appropriate
tag in the password.xml file that points to your keystore password. See the
Password Management section of this document for more information.

6. Restart the Message Receiver servlet. There are several steps that must be
completed on the Message Sender side before encryption can be completely
enabled.

Last Updated 06/03/2003 53

Digital Signatures

Generating Digital Signatures

Digital signatures are generated using the Message Sender’s private key. The Message
Sender retrieves the user’s private key of its asymmetric key pair from the local Java key
store and uses this key to sign the text. The signature string is returned to the user.

Verifying Digital Signatures

The digital signature, the signer’s identity (distinguished name) and the text that is signed
are passed to the Message Receiver for verification. There are two methods for obtaining
the public key used to verify the signed message:

If the sender is using the PHINMS software, the Message Receiver obtains the
public key using the keylInfo attribute in the ebXML envelope.

If the sender is a third-party ebXML client and the keylnfo attribute is empty,
the Message Receiver will expect to retrieve the public key from the
<signingCertsLocation> tag defined in the receiver.xml configuration file. In
this case, the CPA for this sender will need to have a NonRepudiation
Certificate entry that points to the signing certificate.

After the Message Receiver retrieves the public key it uses it to decrypt the signed hash.
After the signed hash is decrypted, the Message Receiver compares the decrypted hash to
the hash, which was computed on the digitally signed message. The identity of the
Message Sender is verified only when the hashes are identical.

Last Updated 06/03/2003 54

Digital Signature Flow

Receiver

Sender Tomcat L Servlet

TrustedStore Public Health Messaging clients Keystore

Keystore LDAP

\

3rd party ebXML clients

\

LDAP \‘; File System

<signingCertsLocation>

Last Updated 06/03/2003 55

To Enable Digital Signatures

To enable digital signatures do the following:

1. Edit the receiver.xml file in <installedPath>\config and change the
<signatureRequired> tags value to true.

2. If your Message Receiver will be supporting any third- party clients,
modify the <signingCertsLocation> tag in the receiver.xml file to point
to a location on disk that will store all third- party public key certificates.

3. Restart the Message Receiver servlet.

Last Updated 06/03/2003 56

Y

Enabling Route-not-Read Encryption

Encrypted Message from A to B

Route-not-Read
Servlet

WebServer

Keystore

Decrypted data
using Client B's

LDAP Search / Private key

Encrypted data | —
using Client B's

Public Key Trusted Store

obtained from
LDAP Search LDAP Search

Encryption

********* SSL Authenification

Last Updated 06/03/2003 57

Security Best Practices

Use the following guidelines to preserve your message’s integrity and secrecy:

Run the Message Receiver on an application server that accepts HTTPS requests.
Connect the web proxy to the server using HTTPS to reduce wiretapping attacks
on the DMZ.

Permit access to the Message Receiver from the web proxy only. Block all other
direct accesses to the Message Receiver.

Permit access to the Message Handler from the Message Receiver only. Block all
other direct accesses to the Message Handler.

Protect the service maps on the Message Receiver by allowing only authorized
users to modify them..

Do not store passwords as plain text files on the Message Sender or Message
Receiver. Promptly delete the plain text files that you use to generate encrypted
password files.

Use digital signatures for non-repudiation of message origin. You need a client
certificate and a public key infrastructure, such as LDAP, to manage the client
certificates.

Use a combination of at least eight numbers and letters for passwords to the key
stores and trusted CA certificates. Each user should have a unique password.

Use only Message Handler services that are within the Message Receiver’s
Intranet. The service map on the Message Receiver should not contain any URLS
for message handler services that point outside the Intranet.

Using file system permissions, allow administrators only to modify the service
map.

If wire-tapping is a risk within the Message Receiver’s Intranet, put the Message
Handler and the Message Receiver on the same host because communication
between the Message Receiver and the Message Handler is not encrypted.

Last Updated 06/03/2003 58

« Using file system permissions, allow only authorized users to modify the
configuration files on the client and on the server.

Using file system permissions, allow only authorized users to read and write
incoming and outgoing payload (file) directories.

Last Updated 06/03/2003 59

System Maintenance

Setting Log Levels

The system’s log level is set using the logLevel entry in the receiver.xml file. If the
setting is set to info, detail, or messages, make sure the log information does not exceed
acceptable disk limits. The greater then and info settings should be used only during
testing and problem-solving sessions. The software should not run in detail or messages
settings for general use because they can write a large amount of information to disk,
which reduces usable disk space and consumes processing power. For example, when
running Tomcat on Windows default logging is displayed on the console. It can take
several seconds to spool a several megabyte Base64 payload on file in format

Log Level Description

none No log information will be written to the file.

error System error messages will be written to the file.

info Basic message information will be written to the file.

detail Detailed message information and specific logical tasks executed by

the program will be written to the file.

messages All possible logging messages are written including the contents of
the messages.

Log File Maintenance

As the system administrator, you must manage log files to permit easy accessibility to
vital log information while maintaining system performance. Maintenance of system log
files is controlled using the following parameters in the receiver.xml file.

Parameters Description

maxLogSize The maximum size of a log file. Once the size limit is reached the
process will stop writing to the log. The default value is 100 megs.
logArchive Possible values are true or false. If true, the process will archive log

files once they reach their size limit. The process will then start a
new log file. The default value is true.

logDir The directory in which the receiver servlet will write log files. The
directory must be an existing directory on the server. The default
value is <installPath>\logs

Last Updated 06/03/2003 60

After the size limit is reached, the system will stop writing to the log file. When
logArchive is set to true, the system will write a new log file in the logDir directory.

The maximum size of the log file can be set to a size that will allow log-file-creation to
correlate with a specific timeframe. For example, the maximum size can be set so that
logs are written daily or once a week. This configuration allows backup process to write
logs to permanent storage without concern for the log file contention.

Last Updated 06/03/2003 61

Integration Issues

In situations where the standard worker queues or file-based Message Handler do not
meet an agency’s needs, the agency may need to build a custom Message Handler. For
example, an agency may need to respond immediately to a party’s request. In this type of
synchronous exchange, the system must receive and process the message then deliver a
response directly back to the calling party. This message exchange scenario is best
handled using a custom Message Handler. A custom Message Handler can accept and
immediately act upon the request. The Message Handler can be a Java servlet, Java
Server Page (JSP), Active Server Page (ASP) or any other type of web-based executable.

Consider the following factors when designing a custom Message Handler.

= Length of the transactions.
= Number of transactions at normal and peak times.
= Availability characteristics.

Make sure the system can respond in a timely manner, especially during peak times. If
the system is unable to respond in a timely manner, an asynchronous process utilizing
worker queues may be a more appropriate solution.

Message Receiver Interface

The interface between the Message Receiver and the custom Message Handler is a
standard HTTP request/response exchange. The Message Receiver un-packages the
ebXML request and sends the payload and associated parameters to the Message Handler
as a multi-part request. The custom Message Handler retrieves parameters from the
text/plain part of the multi-part request. By default, the Message Receiver sends the
following parameters.

Parameters Description

from The party ID of the ebXML client, the Message Sender.

manifest The ebXML manifest sent by the ebXML client, the Message
Sender.

“Arguments” Arguments specified in the Message Handler’s service map. Can be

one or more arguments as a hame/value query string. Example:
arglname=arglvalue&arg2name=arg2value.

The Message Handler retrieves the Base64 encoded payload from the Application/Octet-
Stream part of the multi-part request.

Last Updated 06/03/2003 62

The Message Receiver passes cookies from its session with the ebXML client, the
Message Sender, in the request to the Message Handler. In some environments, the
Message Sender’s cookies may contain user-specific information needed by the back end
system such as a user name.

Example Message Handler Servlet

This is a code listing of an example Message Handler servlet which copies the payload
file to disk:

/**

* Title: <p> MessageHandler

* Description: <p> Handles message passed in by ReceiveFileServlet
* Copyright: Copyright (c) CDC

* Company: CDC

* @author Raja Kailar, PhD.

*

@version 1.0
*/
package gov.cdc.nedss.services.messagehandler;

import java.util_Properties;

import javax.servlet._*;

import javax.servlet_http.*;

import java.io.*;

import java.util._*;

// Import the nedss.common package for?

import gov.cdc.nedss.common.*;

// Incorporate logging mechanisms used in the message receiver
// by importing the nedss logging package.

import gov.cdc.nedss.services.logging.*;

// Import nedss xml utiltities to read receiver.xml file.
import gov.cdc.nedss.utilities.xml.*;

import gov.cdc.nedss.services.transport.message.*;

import gov.cdc.nedss.services.security.encryption.™;

public class MessageHandler extends HttpServilet {

// static property to store incoming directory setting
// system will write payload out to incoming directory
private static String incomingDir = null;

public void setlncomingDir(String s) { incomingDir = s; }
public String getlncomingDir() { return incomingDir; }

/**
* Message Handler initialization routine
* @param Servlet Configuration
*/

Last Updated 06/03/2003 63

public void init(ServletConfig servletConfig) throws
ServiletException {

super.init(servletConfig);
System.out.printIn(‘'MessageHandler started);
System.out.printIn(Defines.VERSION);

String configFile =
servletConfig.getInitParameter(“receiverConfig");
XMLReader xmlrdr = new XMLReader();
xmlrdr.readProperties(configFile);
Properties props = xmlrdr.getProperties();

// Set the log level, default to debug, development?

// using CDC nedss log features

Log.setDebug(true);

Log.setLogDir(props.getProperty(Defines.RECEIVERLOG));
String logLevel = props.getProperty(Defines._RECEIVERLOGLEVEL);

if (logLevel.equalslgnoreCase(''none™)) {
Log.setLogLevel (Log.-NONE);

} else if (logLevel .equalslgnoreCase('error')) {
Log-setLoglLevel (Log-ERROR);

} else if (logLevel _equalsignoreCase("info™)) {
Log.setLoglLevel (Log. INFO);

} else if (logLevel _equalslgnoreCase('detail’™)) {
Log.setlLoglLevel (Log.DETAIL);

}

Log.loglt(''Started MessageHandler servlet'”, Log.INFO);
setlncomingDir(props.getProperty(Defines.RECEIVERINCOMINGDIR));
Log. loglt(*"'messageHandler, incomingDir=" + getlncomingDir(),
Log- INFO);

}

/**

* Servlet post

* The Servlet accepts the payload and parameters as an HTTP post.

* @param Http Servlet Request object

* @param Http Servlet Response object

*/

protected void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, I0Exception {

StringBuffer resp = null;
try {
// call processRequest to write file to disk
if ((resp = processRequest(request)) == null) {
System.out.printIn("'In message handler, error processing
request');
return;

}

Last Updated 06/03/2003 64

PrintWriter out = response.getWriter();
out.printiIn(resp.toString());
out.close();

} catch (Exception e) {
System.out.printIn("Error in doPost™);
e.printStackTrace();

}
}

/**

* Parses the MIME multipart request message and returns a response
* @param Http Servlet Request object

* @return Response string buffer

*/

private StringBuffer processRequest(HttpServletRequest request) {

BufferedReader in = null;
String token = null;
String fromPartyld = null;
String manifest = null;

// use the ? multi part parser
HttpMultiPartParser hmp = new HttpMultiPartParser();

try {
// Splits mime message fields into text and payload

if (Thmp.processHttpRequest(request)) {
System.out.printIn(*Error parsing multipart fields in
request');
return null;
}
} catch (Exception e) {
Log-loglt(e, "Error parsing message in messagehandler',
Log-ERROR);

}

// parse the text parameters
// the message receiver can send multiple text parameters
StringTokenizer st = new StringTokenizer(hmp.getTextPart(), "&");

while (st.hasMoreTokens()) {
token = st.nextToken();
if (token.startsWith("from')) {
fromPartyld =
token.substring(token.indexOf(*'=")+1) .trim();
} else if (token.startsWith("manifest™)) {
manifest = token.substring(token.indexOf('=")+1).trimQ);

}
}

// Do necessary processing of data here
// e.g., Copy File to disk as below

Last Updated 06/03/2003 65

try {
if (hmp.getPayloadPart() != null) {

FileOutputStream fos = new
FileOutputStream(getincomingDir() +

hmp.getFilename());
if (Base64Converter.isBase64(hmp.getPayloadPart())) {

fos.write(Base64Converter._base64StringToByteArray(hmp.getPayloadPart())
)
} else {
fos.write(hmp.getPayloadPart() .getBytes());
}

fos.flush();
fos.close();
}
} catch (Exception e) {
e.printStackTrace();

}

// create response

// Note — these routines will be implemented by the message
handler programmer

// depending on the specific data processing requirements and
logic.

String status = getResponseStatus(); // application
status

String error = getResponseError(); // application
error

String appdata = getResponseAppData(); // get
application data

String payload = getResponsePayload(); // get response
payload

String filename = getResponseFilename(); // get response
filename

// compose mime multi-part response
StringBuffer response = MimeComposer.composeMessage(status,
error,
appdata,
payload,
filename);
return response;

}

// The following routines need to be implemented by the message
handler
// programmer
private String getResponseStatus() {
return (‘'success™);

}

Last Updated 06/03/2003 66

private String getResponseError() {
return ("'noError™);

}

private String getResponseAppData() {
return (“applicationData’™);

}

private String getResponsePayload() {
return null; // UCC

}

private String getResponseFilename() {
return null; // UCC

}

/**
* Dummy get method
*/
public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I0Exception {

PrintWriter out = resp.getWriter();

resp.setContentType("text/html'");

out.printin('<html>");

out_printIn('ebXML Default MessageHandler 2.0
");

out.printIn('Centers for Disease Control and
Prevention
");

out.printIn(Defines.VERSION+"
");

out.printIn('</html>");

Last Updated 06/03/2003 67

Appendix

Appendix A.

Worker Queue Generation Scripts

Worker Queue Generation Script for Oracle

DROP TABLE <Tablename>;

CREATE TABLE <Tablename> (
recordld NUMBER (20) NOT NULL,
messageld VARCHAR2 (255) NULL,
payloadName VARCHAR2 (255) NULL,
payloadBinaryContent BLOB,
payloadTextContent CLOB,
localFilename VARCHAR2 (255) NULL,
service VARCHAR2 (255) NOT NULL,
action VARCHAR2 (255) NOT NULL,
arguments VARCHAR?2 (255) NULL,
fromPartyld VARCHAR?2 (255) NULL,
messageRecipient VARCHAR?2 (255) NULL,
errorCode VARCHAR?2 (255) NULL,
errorMessage VARCHAR?2 (255) NULL,
processingStatus VARCHAR?2 (255) NULL,
applicationStatus VARCHAR?2 (255) NULL,
encryption VARCHAR?2 (10) NOT NULL,
receivedTime VARCHAR2 (255) NULL,
lastUpdateTime VARCHAR?2 (255) NULL,
processld VARCHAR?2 (255) NULL,

);
ALTER TABLE <Tablename>
ADD PRIMARY KEY (recordld);
CREATE SEQUENCE <Tablename>_record_count
INCREMENT BY 1
START WITH 10
MINVALUE 1
MAXVALUE 999999999999999999999999999
NOCYCLE
NOORDER
CACHE 20;

Note: The sequence name must be <Tablename>_record_count
for the Message Receiver to properly increment the worker queue
records.

Last Updated 06/03/2003 68

Script for SQL Server

CREATE TABLE [dbo].[<Tablename>] (
[recordld] [bigint] IDENTITY (1, 1) NOT NULL,
[messageld] [varchar] (255) NULL,
[payloadName] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[payloadBinaryContent] [IMAGE] NULL ,
[payloadTextContent] [TEXT] NULL,
[localFileName] [varchar] (255) COLLATE SQL_Latinl_General_ CP1_CI_AS NULL,
[service] [varchar] (255) COLLATE SQL_Latinl_General_CP1_CI_AS NOT NULL,
[action] [varchar] (255) COLLATE SQL_Latinl_General_CP1_Cl_AS NOT NULL,
[arguments] [varchar] (255) COLLATE SQL_Latinl_General_CP1_Cl_AS NULL,
[fromPartyld] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[messageRecipient] [varchar] (255) COLLATE SQL_Latin1_General_CP1_Cl_AS NULL,
[errorCode] [varchar] (255) COLLATE SQL_Latinl_General CP1_CI_AS NULL,
[errorMessage] [varchar] (255) COLLATE SQL_Latinl_General_CP1_CI_AS NULL,
[processingStatus] [varchar] (255) COLLATE SQL_Latinl_General_CP1_CI_AS NULL,
[applicationStatus] [varchar] (255) COLLATE SQL_Latin1_General _CP1_CI_AS NULL ,
[encryption] [varchar] (10) COLLATE SQL_Latin1_General_CP1_Cl_AS NOT NULL,
[receivedTime] [varchar] (255) COLLATE SQL_Latinl_General CP1_CI_AS NULL,
[lastUpdateTime] [varchar] (255) COLLATE SQL_Latinl_General_CP1_CI_AS NULL,
[processld] [varchar] (255) COLLATE SQL_Latinl_General_CP1_CI_AS NULL,

) ON [PRIMARY]

GO

Server-Side Persistent Cache Schema:

Messaging Cache for SQL Server (server-side persistent cache):

CREATE TABLE [dbo].[messagingcache] (
[sequence] [int] IDENTITY (1, 1) NOT NULL,
[partyld] [char] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[convid] [char] (50) COLLATE SQL_Latinl_General_CP1_CI_AS NULL,
[recordld] [char] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[response] [text] COLLATE SQL_Latinl_General_CP1_Cl_AS NULL,
[timestamp] [char] (30) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[status] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

Messaging Cache for Oracle:

CREATE TABLE messagingcache (
sequence NUMBER (20) NOT NULL,

partyld VARCHAR?2 (255) NULL,
convld VARCHAR? (255) NULL,
recordld VARCHAR?2 (255) NULL,
response CLOB,
timestamp VARCHAR2 (50) NULL,
status VARCHAR?2 (20) NULL);

CREATE SEQUENCE messagingcache_record_count

INCREMENT BY 1

START WITH 10

MINVALUE 1

MAXVALUE 999999999999999999999999999

NOCYCLE

NOORDER

CACHE 20;

Last Updated 06/03/2003 69

Appendix B.

Transport Queue Generation Scripts

Transport Queue Generation Script for Oracle

DROP TABLE TransportQ_out;

CREATE TABLE TransportQ_out (
recordld NUMBER (20) NOT NULL,
messageld VARCHAR2 (255) NULL,
payloadFile VARCHAR2 (255) NULL,
payloadContent BLOB,
destinationFilename VARCHAR2 (255) NULL,
routelnfo VARCHAR?2 (255) NOT NULL,
service VARCHAR2 (255) NOT NULL,
action VARCHAR2 (255) NOT NULL,
arguments VARCHAR?2 (255) NULL,
messageRecipient VARCHAR2 (255) NULL,
messageCreationTime VARCHAR2 (255) NULL,
encryption VARCHAR2 (10) NOT NULL,
signature VARCHARZ2 (10) NOT NULL,
publicKeyLdapAddress VARCHAR2 (255) NULL,
publicKeyLdapBaseDN VARCHAR2 (255) NULL,
publicKeyLdapDN VARCHAR2 (255) NULL,
certificateURL VARCHARZ2 (255) NULL,
processingStatus VARCHAR2 (255) NULL,
transportStatus VARCHAR2 (255) NULL,
transportErrorCode VARCHAR2 (255) NULL,
applicationStatus VARCHAR2 (255) NULL,
applicationErrorCode VARCHAR?2 (255) NULL,
applicationResponse VARCHAR2 (255) NULL,
messageSentTime VARCHAR2 (255) NULL,
messageReceivedTime VARCHAR2 (255) NULL,
responseMessageld VARCHAR2 (255) NULL,
responseArguments VARCHAR?2 (255) NULL,
responselocalFile VARCHAR2 (255) NULL,

Last Updated 06/03/2003 70

responseFilename VARCHAR2 (255) NULL,
responseContent BLOB,
responseMessageOrigin VARCHAR?2 (255) NULL,
responseMessageSignature VARCHAR2 (255) NULL,
priority NUMBER (1) NULL
);

ALTER TABLE TransportQ_out

ADD PRIMARY KEY (recordld);

CREATE SEQUENCE transport_record_count

INCREMENT BY 1

START WITH 10

MINVALUE 1

MAXVALUE 999999999999999999999999999

NOCYCLE

NOORDER

CACHE 20;

Transport Queue Generation Script for SQL Server

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[TransportQ_out]') and
OBJECTPROPERTY(id, N'lsUserTable") = 1)

drop table [dbo].[TransportQ_out]

GO

CREATE TABLE [dbo].[TransportQ_out] (
[recordld] [bigint] IDENTITY (1, 1) NOT NULL ,
[messageld] [char] (255) NULL,
[payloadFile] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[payloadContent] [IMAGE] NULL ,
[destinationFilename] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[routelnfo] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[service] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[action] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[arguments] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[messageRecipient] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

Last Updated 06/03/2003 71

NULL ,

NULL ,

NULL ,

NULL ,

NULL ,

NULL ,

[messageCreationTime] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS

[encryption] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[signature] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[publicKeyLdapAddress] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS

[publicKeyLdapBaseDN] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS

[publicKeyLdapDN] [char] (255) COLLATE SQL_Latin1_General _CP1_CI_AS NULL ,
[certificateURL] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[processingStatus] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[transportStatus] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[transportErrorCode] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[applicationStatus] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[applicationErrorCode] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

[applicationResponse] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

[messageSentTime] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[messageReceivedTime] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS

[responseMessageld] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[responseArguments] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[responseLocalFile] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[responseFilename] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[responseContent] [IMAGE] NULL ,

[responseMessageOrigin] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS

[responseMessageSignature] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS

[priority] [int] NULL

) ON [PRIMARY]

GO

Last Updated 06/03/2003 72

Appendix C.

Worker Queue Generation Scripts

Note: The sequence name below must be <Tablename>_record_count for
the Message Receiver to properly increment the worker queue records.

Worker Queue Generation Scripts for Oracle

DROP TABLE <Tablename>;

CREATE TABLE <Tablename> (
recordld NUMBER (20) NOT NULL,
messageld VARCHAR2 (255) NULL,
payloadName VARCHAR2 (255) NULL,
payloadBinaryContent BLOB,
payloadTextContent CLOB,
localFilename VARCHAR?2 (255) NULL,
service VARCHAR2 (255) NOT NULL,
action VARCHAR2 (255) NOT NULL,
arguments VARCHAR?2 (255) NULL,
fromPartyld VARCHAR2 (255) NULL,
messageRecipient VARCHAR2 (255) NULL,
errorCode VARCHAR?2 (255) NULL,
errorMessage VARCHAR?2 (255) NULL,
processingStatus VARCHAR2 (255) NULL,
applicationStatus VARCHAR?2 (255) NULL,
encryption VARCHAR2 (10) NOT NULL,
receivedTime VARCHAR?2 (255) NULL,
lastUpdateTime VARCHARZ2 (255) NULL,
processld VARCHAR2 (255) NULL);

ALTER TABLE <Tablename>

ADD PRIMARY KEY (recordld);

CREATE SEQUENCE <Tablename>_record_count

INCREMENT BY 1

START WITH 10

MINVALUE 1

Last Updated 06/03/2003 73

MAXVALUE 999999999999999999999999999
NOCYCLE
NOORDER
CACHE 20;

Worker Queue Generation Script for SQL Server

CREATE TABLE [dbo].[<Tablename>] (
[recordld] [bigint] IDENTITY (1, 1) NOT NULL ,
[messageld] [varchar] (255) NULL,
[payloadName] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[payloadBinaryContent] [IMAGE] NULL ,
[payloadTextContent] [TEXT] NULL,
[localFileName] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT
NULL ,
[service] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[action] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[arguments] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[fromPartyld] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[messageRecipient] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

[errorCode] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[errorMessage] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[processingStatus] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[applicationStatus] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[encryption] [varchar] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[receivedTime] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[lastUpdateTime] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[processld] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

) ON [PRIMARY]

GO

Last Updated 06/03/2003 74

Appendix D.
Route-not-Read SQL Generation Scripts

Broadcast Generation Script for SQL Server

CREATE TABLE [dbo].[broadcast] (

[name] [char] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[addresses] [char] (1000) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL
) ON [PRIMARY]

GO

Broadcast Generation Script for Oracle

CREATE TABLE broadcast (
name VARCHAR?2 (255) NOT NULL,
addresses VARCHAR?2 (255) NOT NULL);

Messagebin Generation Script for Oracle

DROP TABLE <Tablename>;

CREATE TABLE <Tablename> (
recordld NUMBER (20) NOT NULL,
messageld VARCHAR?2 (255) NULL,
payloadName VARCHAR2 (255) NULL,
payloadBinaryContent BLOB,
payloadTextContent CLOB,
localFilename VARCHAR?2 (255) NULL,
service VARCHAR2 (255) NOT NULL,
action VARCHAR2 (255) NOT NULL,
arguments VARCHAR?2 (255) NULL,
fromPartyld VARCHAR2 (255) NULL,
messageRecipient VARCHAR2 (255) NULL,
errorCode VARCHAR?2 (255) NULL,
errorMessage VARCHAR2 (255) NULL,
processingStatus VARCHAR2 (255) NULL,

Last Updated 06/03/2003 75

applicationStatus VARCHAR?2 (255) NULL,
encryption VARCHAR2 (10) NOT NULL,
receivedTime VARCHAR2 (255) NULL,
lastUpdateTime VARCHAR?2 (255) NULL,
processld VARCHAR2 (255) NULL);

ALTER TABLE <Tablename>

ADD PRIMARY KEY (recordld);

CREATE SEQUENCE <Tablename>_record_count
INCREMENT BY 1

START WITH 10

MINVALUE 1

MAXVALUE 999999999999999999999999999
NOCYCLE

NOORDER

CACHE 20;

Messagebin Generation Script for SQL Server

CREATE TABLE [dbo].[<Tablename>] (

NULL ,

[recordld] [bigint] IDENTITY (1, 1) NOT NULL ,

[messageld] [varchar] (255) NULL,

[payloadName] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[payloadBinaryContent] [IMAGE] NULL ,

[payloadTextContent] [TEXT] NULL,

[localFileName] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT

[service] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[action] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[arguments] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[fromPartyld] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[messageRecipient] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

[errorCode] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[errorMessage] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[processingStatus] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[applicationStatus] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,

Last Updated 06/03/2003 76

[encryption] [varchar] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[receivedTime] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[lastUpdateTime] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[processld] [varchar] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

) ON [PRIMARY]

GO

Users Generation Script for SQL Server

CREATE TABLE [dbo].[users] (
[name] [char] (100) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[description] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NULL
) ON [PRIMARY]
GO

Users Generation Script for Oracle

CREATE TABLE users (
name VARCHAR2 (255) NOT NULL,
description VARCHAR?2 (255) NULL);

PartylD_User Generation Script for SQL Server

CREATE TABLE [dbo].[partyid_user] (
[partyld] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
[user] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL
[sdnuser] [char] (255) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL

) ON [PRIMARY]

GO

Last Updated 06/03/2003 77

PartylD_User generation Script for Oracle

CREATE TABLE partyid_user (
partyld VARCHAR2 (255) NOT NULL,
user VARCHAR2 (255) NOT NULL),
sdnuser VARCHAR? (255) NOT NULL);

Last Updated 06/03/2003 78

Appendix E.

File-Based Message Queue

The message queue can also be implemented using operating system files, without using
a relational database table. The file descriptors can be name-value pairs or XML files.

Name-Value Based File Descriptor

The following is a name-value based file descriptor :

recordId=22
payloadFile=d:\\projects\\clebint\\ebxmlvob\\outgoing\\test.txt
destinationFilename=test.txt

routeInfo=0OKLAHOMA

service=Router

action=send

arguments=xyz

messageRecipient=1ist56

messageCreationTime=time

encryption=no

signature=yes

publicKeyLdapAddress=directory.verisign.com:389
publicKeyLdapBaseDN=o=Centers for Disease Control and Prevention
publicKeyLdapDN=cn=Rajashekar Kailar
acknowledgementFile=d:\\projects\\clebint\\ebxmlvob\\filesend acks
\\ack_ send.props

The response from a file-send operation is written to the acknowledgementFile specified
in the outgoing file descriptor, shown previously, and looks like the following:

transportStatus=success
transportError=none
applicationStatus=retrieveSucceeded
applicationError=none
applicationData=TargetTable=payroll
responselLocalFile=1018379449158
responseFileName=test.txt
responseSignature=unsigned
responseMessageOrigin=LABCORP

For a detailed description of these fields, refer to the Message Queue table schema, which
contains fields with the same name and semantics.

XML Based File Descriptor

The following is an example of an XML file descriptor:

<fileDescriptors>
<recordIds>22</recordId>
<payloadFile>d:\projects\clebint\ebxmlvob\outgoing\test.txt<
/payloadFile>
<payloadContent></payloadContent>
<destinationFilename>test.txt</destinationFilename>
<routeInfo>OKLAHOMA</routeInfo>

Last Updated 06/03/2003 79

<servicesRouter</services
<actions>send</action>
<arguments>xyz</argumentss>
<messageRecipient>list56</messageRecipient>
<messageCreationTime>time</messageCreationTime>
<encryptionsyes</encryptions>
<signatures>yes</signature>
<messageRecipient>list56</messageRecipient>
<publicKeylLdapAddress>directory.verisign.com:389</publicKeyL
dapAddress>
<publicKeylLdapBaseDN>0=CDC</publicKeyLdapBaseDN>
<publicKeylLdapDN>cn=Rajashekar Kailar</publicKeyLdapDN>
<acknowledgementFilex>
d:\projects\clebint\ebxmlvob\filesend acks\ack send.xml
</acknowledgementFile>

</fileDescriptors>

The response from a file-send operation is written to the acknowledgementFile specified
in the outgoing file descriptor, shown previously, and looks like the following:

<acknowledgement >
<transportStatuss>success</transportStatuss>
<transportError>none</transportError>
<applicationStatus>retrieveSucceeded</applicationStatu
s>
<applicationErrors>none</applicationError>
<applicationData>targetTable=payroll</applicationDatax>
<responselLocalFile>1018387200432</responselocalFiles>
<responseFileName>test.txt</responseFileName>
<responseSignature>unsigned</responseSignature>
<responseMessageOrigin>LABCORPDUNSNUMBER<«/responseMess
ageOrigins>

</acknowledgement >

For a detailed description of these fields, refer to the Message Queue Table Schema,
which contains fields with the same name, and semantics.

Last Updated 06/03/2003 80

Appendix F.

Transport Level Status and Error Codes

The following status and error codes may be written to the message queues based on the
outcome of the message delivery or processing. Applications that use the PHINMS
system can read these codes and act on them.

Status Codes

Status Description

success Message Send/Receive operation successful
failure Message Send/Receive operation failure

Error Codes

ErrorCode Description

SecurityFailure Error logging into Message Receiver

DeliveryFailure Failed to deliver message

NotSupported Format of ebXML message or CPA unsupported

Unknown Not a standard ebxml error

NoSuchService (*) Service/Action did not map to a service on the
Message receiver

CheckSumFailure (*) File checksum verification failure at the Message
Receiver

(*) Custom error codes - not in ebXML specification.

Last Updated 06/03/2003 81

Appendix G.

Example receiver.xml File

<Receiver>
<logDir>c:\phmsgServer_2_0\logs\</logDir>
<logLevel>messages</logLevel>
<incomingDir>c:\phmsgServer_2 O\incoming\</incomingDir>
<myPartyld>cdc</myPartyld>
<cpaLocation>c:\phmsgServer_2 0O\config\CPA\</cpalLocation>
<serviceMap>c:\phmsgServer_2_ O\config\servicemap.xml</serviceMap>
<passwordFile>c:\phmsgServer_2 0O\config\receiverpasswds</passwordFil
e>
<keyStore>c:\phmsgServer_2 O\config\phmsg2.pfx</keyStore>
<keyStorePasswd>keyStorePasswdl</keyStorePasswd>
<trustStore>c:\phmsgServer_2_0\keystores\cacerts</trustStore>
<trustStorePasswd>cacertsPasswdl</trustStorePasswd>
<signatureRequired>false</signatureRequired>
<signingCertsLocation>c:\phmsgServer_2 0O\config\signhingcerts</signin
gCertsLocation>
<key>g490uradf</key>
<seed>214150145125193</seed>
<uccTest>false</uccTest>

</Receiver>

Last Updated 06/03/2003 82

Appendix H.

Example Collaborative Protocol Agreement (CPA)

<?xml version="1.0" ?>

<tp:CollaborationProtocolAgreement
xmlns:tp=""http://www.ebxml.org/namespaces/tradePartner"’
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance"
xsi:schemalLocation=""http://www.ebxml _org/namespaces/tradePartner
http://ebxml .org/project_teams/trade_partner/cpp-cpa-vl_0.xsd"
xmIns:xlink="http://www.w3.0rg/1999/xlink""
xmIns:ds=""http://www.w3.0rg/2000/09/xmldsig#"
tp:cpaid=""uri:yoursandmycpa' tp:version=""1_2">

<tp:Status tp:value="'proposed" />

<tp:Start>2001-05-20T07:21:00Z</tp:Start>
<tp:End>2002-05-20T07:21:00Z</tp:End>
<tp:ConversationConstraints tp:invocationLimit="100"
tp:concurrentConversations="100" />

<tp:Partylnfo>
<tp:Partyld tp:type="DUNS">LABCORPDUNSNUMBER</tp:Partyld>
<tp:PartyRef xlink:href="http://www.lab.com/about._html' />

<tp:Transport tp:transportld="N05">
<tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>
<tp:ReceivingProtocol
tp:version="1_1">HTTP</tp:ReceivingProtocol>
<tp:Endpoint tp:uri="www.lab.com/soapreceiver/receiver”
tp:type="allPurpose" >
<tp:TransportSecurity>
<tp:Protocol tp:version="3.0">SSL</tp:Protocol>
<tp:CertificateRef tp:certld="N03" />
</tp:TransportSecurity>
</tp:Transport>
</tp:Partylnfo>

<tp:Partylnfo>

<tp:Partyld tp:type="DUNS">CDCDUNSNUMBER</tp:Partyld>
<tp:PartyRef xlink:type="simple"
xlink:href="http://www.cdc.gov/about._html"/>

<tp:Transport tp:transportld="N35">
<tp:SendingProtocol tp:version="1_1">HTTPS</tp:SendingProtocol>
<tp:ReceivingProtocol
tp:version="1.1">HTTPS</tp:ReceivingProtocol>
<tp:Endpoint tp:uri="phmsg.cdc.gov/ebxml/receivefile”
tp:type="allPurpose" />
<tp:TransportSecurity>
<tp:Protocol tp:version="3.0">SSL</tp:Protocol>
<tp:CertificateRef> </tp:CertificateRef>
<tp:authenticationType>basic</tp:authenticationType>

Last Updated 06/03/2003 83

<l-- basic, custom, sdn, clientcert -->
<tp:basicAuth>
<tp:indexPage>/test._html</tp:indexPage>
<tp:basicAuthUser>phmsgUserl</tp:basicAuthUser>
<tp:basicAuthPasswd>phmsgPasswd1l</tp:basicAuthPasswd>
</tp:basicAuth>
</tp:TransportSecurity>
</tp:Transport>

</tp:Partylnfo>

<tp:Comment xml:lang="en-us''>send/receive agreement between cdc and
Labcorp</tp:Comment>

</tp:CollaborationProtocolAgreement>

Last Updated 06/03/2003 84

Appendix .

Example Receiver Password File

<?xml version="1.0"7?>

<passwordFile>
<trustStorePass>changeit</trustStorePass>
<keyStorePass>passphrase</keyStorePass>
<dbUser>phmsg</dbUser>
<dbPasswd>phmsg123</dbPasswd>
<mysqgldbUser>root</mysqldbUser>
<mysqldbPasswd>sql</mysqgldbPasswd>

</passwordFile>

Appendix J.

Example Routerconfig.xml File

- <Router>
- <l--

_SETTINGS FOR MYSQL DB ON LINUX
<jdbcDriver>org.gjt.mm.mysql.Driver</jdbcDriver>
<databaseUrl>jdbc:mysql://158.111.1.164:3306/test</databaseUrl>
<databaseUser>myqsldbUser</databaseUser>

<databasePasswd>myqsldbPasswd</databasePasswd>
-——>
-<l--

SETTINGS FOR SQL SERVER DB ON NEDSS-SQL3

values can be sqlServer, oracle
-—
<dbType>sqlServer</dbType>

<jdbcDriver=>com.microsoft.jdbc.sqlserver.SQLServerDriver</jdbcDri
ver=>
<databaseUrl=jdbc:microsoft:sqlserver://nedss-
sql3.cdc.gov:1433;DatabaseName=Phmsg</databaseUr|>
<databaseUser>sqlServerDbUserRemote</databaseUser>
<databasePasswd>sqlServerDbPasswdRemote</databasePasswd>
- <l--
END SETTINGS FOR SQL SERVER
—-—>
- <l--

_SETTINGS FOR ORACLE ON NEDSS-REPORT

Last Updated 06/03/2003 85

<dbType>oracle</dbType>
<jdbcDriver>oracle.jdbc.driver.OracleDriver</jdbcDriver>
<databaseUrl>jdbc:oracle:thin:@nedss-report:1521:ebxmi</databaseUrl>
<databaseUser>oracleServerDbUserRemote</databaseUser>

<databasePasswd>oracleServerDbPasswdRemote</databasePasswd>

-—>
<sdnAuth>false</sdnAuth>

<passwordFile>d:\tomcat4\ebxml\config\receiverpasswds</passwor

dFile>
<payloadDir>d:\tomcat4\ebxml\payloaddir\</payloadDir>
<logLevel=info</logLevel>
<logDir>d:\tomcat4\ebxmNlogs\</logDir>
<maxLogSize>10000000</maxLogSize>
<logArchive>true</logArchive>
<maxMessageBufferSize=1000000</maxMessageBufferSize>
<deleteOnPickup>true</deleteOnPickup>
<key>203i23</key>
<seed=>151209139182126100100162</seed>

</Router>

Last Updated 06/03/2003 86

