
V3 Message Building
Strategies

Understanding And Populating
HL7 V3 PHIN Messages

Dale Nelson
Zed-Logic Informatics, LLC

Agenda

• Overview
• HL7 Basics
• Processing Basics

Overview

• Scope
– V3 PHIN message construction

• Specifically PHIN Notification Message
• Applicable to all

General Comments
– CDC PHIN is an Early Adaptor of V3 Messaging Standards

• Will learn and refine process over time
• Experience will feed back into HL7 process and model
• Part of distinguished group

~ 30 early adaptor efforts underway worldwide
– MANY ways to build messages

• There is no “best” way
• Best practices still open for discussion

– Current Tools easily broken
• Very complex schemas

– Feedback process already has resulted in schema simplification
• Beware the phrase “supports W3C schema”

– Vendor/tool agnostic

– RIM is an ABSTRACT model for healthcare
• Logical Architecture - deals with objects
• Requires a Logical Data Model for persistance
• Physical Model may be VERY different
• Could be used as a first approximation in a reference implementation

Also
• Messages represent object instance serializations in the

Refined Domain Model
– Objects = Identity + Data + Meaning
– They do NOT represent only data structures

• Messaging Process is
– Not Data Messaging (Moving data from A to B)
– Info Model Messaging (HL7 V3)

1. Map Data model to Information Model (RIM)
2. Transport message
3. Process Information Model (receiver)

HL7 RIM Core Classes

Entity Role Participation Act

1

0..*
1

0..*

1

0..*

Relationship Link
Act Relationship

0..* 0..*

0..1 0..1

0..* 0..*

0..1 0..1

1

0..*

plays

scopes

Every happening
is an Act:

Procedures,
observations,
medications,
etc

Acts are related
through an
Act_relationship

Participation
defines the
context for an
Act: author,
subject, etc

The participants
are Roles

patient,
provider, etc

Roles are played
by Entities

persons,
organization
s, etc.

HL7 Methodology Steps

• From RIM to XML Instance
– Refine, clone, constrain, walk, format

• XML Knowledge IS NOT ENOUGH
– Need Domain Knowledge to map into

messages (Implementation Guides!)

Processing Basics

• Focus on Sender

Client (Sending) Tasks

• Build Message
• Send Message

– Use system such as PHIN-MS

Receiver Tasks
• Receive payload via PHIN-MS

– Unwrap
• Parse (and possibly validate) payload

– SAX
– JAX-B
– Other (Castor, etc)
– .NET
– Integration engine / product

• Apply message & semantics to application

Receiver Processing

Receiver Processing
• Role-based behavior

– Application Role = Archivist, but can be active role, such as
order manager, etc.

• Constraint processing
– There are many things you can do in an instance that are valid

by the schema, but not valid by HL7
• IVL_TS (high, low, center, width)
• II (extension, root)
• Future tool (OCL) to apply constraints in schema to message

• If objects instantiated
– Use inheritance to process
– Can trigger “work” via detection of state changes in focal objects

• Workflow
• Rules Reasoning
• Simple Repository population

Sender Processing Steps
1. Capture data from disparate input

sources & data models
– Existing Repository
– Message Feeds
– Application Data

2. Translate to Common Information Model
– RIM based

3. Serialize as XML message
4. Send via PHIN-MS

Extraction & Mapping

Mapping
Rules

Message
Instance

Source
Data

Message
Builder

Extract

Apply

Emit

Message Builder
• Start with R-MIM model
• Build Object Graph of Class Clones
• Extract and map source data to attributes
• Translate to DOM
• Serialize
• Validate ?
• Send via PHIN-MS or equivalent
• NOTE:

– You don’t have to do all of this
• You could simply hand-code XML
• It just makes extensibility and maintainence easier

Data Extraction & Mapping
• Push Model

– Populate the message by visiting the data (push data)
• Data-Driven XML Binding

• Pull Model
– Build generic message, walk, pulling data from source as needed

• Custom DOM application
• Class Clone model

• Push-Pull Model
– Populate intermediate representation by visiting data, then
– Build generic message, walk, pulling data from intermediate rep as

needed
• Data-driven XML Binding + Class Clone model

Push (1)
Data-Driven XML Binding

• Extract XML from repository via tools
– Most DB vendors provide DB schema to XML

Schema generation
• Use XSLT (or similar) to translate XML

instances to V3 messages
– Probably can’t be done? (reasonably)

• V3 message semantics too complex/rich for
reasonable transforms

Push (2)
Data-Driven XML Binding

• Typical of JAX-B, Castor, many vendor apps
– Put Data into Canonical XML format

• Extract XML from repository via tools
– Most DB vendors provide DB schema to XML Schema

generation

– Generate (Java) classes from XML Schema
– Unmarshall DB XML extracts to class instances
– Manipulate class instances and serialize as XML

Data-driven

• Problems:
– Not likely DB schema resembles R-MIM

• Schema represents the input data model, not the
V3 Message format

– Still need to translate to V3 Message Schema
» Haven’t saved any work

Push (3)
Data-Driven XML Binding

• Typical of JAX-B, Castor, many vendor
apps
– Generate (Java) classes from V3 Message

XML Schema
– Populate classes via ObjectFactory
– Manipulate class instances and serialize as

XML

Pull
DOM

• Custom program to build DOM tree
– Intrinsic knowledge of message structure
– Not very re-useable

• Relatively straightforward
• Serialization easy

Pull, Push-Pull
Object Graph Methods

• Java Classes
– Get, set methods on attributes
– Constructors to set default values
– Methods to access associated classes

HL7 Java SIG

• The goal of the Java SIG
– to develop a software API for the parsing and

building of messages.
• Build a message given a RIM object graph that has

already been populated with message content.
• Parse a given message creating and populating a

RIM object graph as required to contain the
message content.

PHIN Notification R-MIM

But we only use this much for “Msg A”

R-MIM Snippet of Interest

Sample Snippet
<publicHealthCase>

<id/>
<code codeSystem="2.16.840.1.114222.4.19.999" code="10101" displayName="Hepatitis C, acute"/>
<text>general comments</text>
<statusCode code="active"/>
<effectiveTime>

<low value="20030108"/>
</effectiveTime>
<activityTime>

<low value="20030107"/>
</activityTime>
<detectionMethodCode nullFlavor="UNK"/>
<transmissionModeCode nullFlavor="UNK"/>
<component3 typeCode="COMP">

<observationProcess>
<code codeSystem="2.16.840.1.114222.4.19.999" code="INV128"/>
<value xsi:type="CV" codeSystem="2.16.840.1.114222.4.19.222" code="Y"/>

</observationProcess>
</component3>
<subject2 typeCode="SBJ">

<patient>
<patientPerson>

<administrativeGenderCode codeSystem="2.16.840.1.114222.4.19.999" code="M"/>
<birthTime value="20000101"/>
<deceasedInd value="false"/>
<addr use="PST">

<postalCode>68501</postalCode>
</addr>
<raceCode codeSystem="2.16.840.1.114222.4.19.999" code="2106-3"/>
<raceCode codeSystem="2.16.840.1.114222.4.19.999" code="2108-9"/>
<ethnicGroupCode codeSystem="2.16.840.1.114222.19.999" code="2100-0"/>

</patientPerson>
</patient>

</subject2>
</publicHealthCase>

Model in UML?

PublicHealthCase

ParticiaptionRole

Person

UML Class Generation

Generated Class (Case)
public class Case extends Act {

// attributes
private CS classCode;
private CS moodCode;
private CV cd;

// associations
public Participation participation;

// access methods for associations
public Participation getParticipation() {

return participation; }
public void setParticipation(Participation participation) {

this.participation = participation; }

// operations
public CS getMoodCode() {

return moodCode; }
public void setMoodCode(CS _moodCode) {

moodCode = _moodCode; }
public CS getCd() {

return cd; }
public void setCd(CS _cd) {

cd = _cd; }
}

Generated Class (Person)
public class Person extends LivingSubject {

// attributes
private CS classCode;
private AD address;
private CV administrativeGenderCode;

// operations
public AD getAddress() {

return address; }

public void setAddress(AD _address) {
address = _address; }

public CS getClassCode() {
return classCode; }

public void setClassCode(CS _classCode) {
classCode = _classCode; }

public CV getAdministrativeGenderCode() {
return administrativeGenderCode; }

public void setAdministrativeGenderCode(CV _administrativeGenderCode) {
administrativeGenderCode = _administrativeGenderCode; }

} // end Person

Pseudo -Code
Context context = ContextFactory.newContext(“… identification of input data …”);

Case msg = msgFactory.newCase();
msg.setCd(dtFactory.newCS(codeSystem, “629808”));

Participation p = msgFactory.newParticipation();
Role r = msgFactory.newRole();
Person psn = msgFactory.newPerson();

psn.setAddress(dtFactory.newAD(“zip”, context.getPostalCode()));
psn.setAdministrativeGenderCode(dtFactory.newCV(codeSystem,

context.getGenderCode()));
r.setPatientPerson(psn); // attach person to role
p.setPatient(r); // attach role to participation
msg.setParticipation(p); // attach participation to Case

Data Mapping
• How do we get the data to populate the objects?

Careful application of Implementation Guides
Always need a “context” (Case ID, Obs Id, etc)

– Pull Model
• Use custom logic to obtain data (e.g., JDBC, ADO…)

– Push-Pull
• Push relevant data to intermediate source

– Use Data driven XML Binding
• Pull data from intermediate graph

Gotchas
• Datatypes

– Special handlers needed for many datatypes (Complex & composite types)
• TS

– “20030515T104500” => “20030515104500-0500”
– “15-May-03 10:45:00” => “20030515104500-0500”

• IVL_TS
– “12-May-1987 to 12-May-1988” =>

<effectiveTime>
<low value=“198705122000” inclusive=“true”/>
<high value=“198705122130” inclusive=“true”/>

</effectiveTime>

• RTO_PQ_PQ
– “15 mg/dL” =>

<foo>
<numerator value=“15“ unit=“mg“ />
<denominator value=“1“ unit=“dL“/>

</foo>

• RTO_MO_PQ "USD189.95:1
<foo>

<numerator value=“189.95“ currency=“USD“/>
<denominator value=“1” unit=“”/>

</foo>

• Null Values
– <<null>> => <foo nullflavor=“UNK”/>

Walk graph

• Serialize
– Order dependencies

• HL7 JAVA SIG uses HMD information to drive
order

• Could use schema to define a transform
– COTS or Open source Serializer

org.apache.xml.serialize

Touch Ups

Ship It

Questions?

Dale Nelson

Principal Consultant

Zed-Logic Informatics, LLC

dale@zed-logic.com

