Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Interim Guidance for Protecting Deepwater Horizon Response Workers and Volunteers

NOTE: This page is archived for historical purposes and is no longer being maintained or updated.

A. Guidance on Selection of Protective Clothing

Choosing the proper chemical and flame resistant protective garments is an exercise in the selection of fabric, seam and design. The selection must be based on expected exposure and verified by field audits and changed if the selected PPE does not perform adequately. The potential for contribution to heat stress must also be considered in the selection of protective clothing, in addition to the potential exposure to fire, water, oil and tar, and other chemicals. In general, overprotection from chemical and fire exposure generally creates a greater potential for heat stress. Partial body garments such as aprons and sleeves may be used to help reduce the risk of increased heat stress where the potential for heavy exposures to certain parts of the body is limited and hygiene facilities to handle incidental exposures exist. Evaluate the job to determine where it is feasible to use lower levels of PPE to reduce potential heat stress.

1. Selection of Fabric

When exposures may require repulsion of droplets of oil., repellant-treated fabrics should be used. Some treated fabrics will become oil soaked when subjected to higher quantities of liquid oil under pressure. Coated fabrics generally offer a higher level of barrier to liquid oil and are divided into two categories – impermeable and selectively permeable barrier materials or fabrics. Both types will provide a physical barrier to liquid and solidified oil. These fabrics come in a range of weights and durability. Full body garments made from impervious film fabrics have higher potential for heat stress. Microporous film fabrics often use thin films to achieve high moisture transport. These products may be easily abraded and damaged, thus compromising the barrier protection of the fabric. Uncoated or permeable fabrics, spun-bonded polypropylene and polypropylene SMS (spunbond/meltblown/spunbond), will, in general, absorb or allow penetration of oil but typically result in lower heat stress for the wearer. Garments made with permeable fabrics should be considered in situations where little or no liquid oil contact is expected, such as removing tar balls from the beach. Partial body garments, such as sleeves and aprons worn over these garments, can provide added barrier protection in areas of the body where greater exposure is expected or observed. Partial body garments can be made from the same impermeable fabrics or from impervious film fabrics. Flame resistant clothing should be selected in accordance with 29 Code of Federal Regulations (CFR) Section 1910.132, the General Industry Standard for PPE.

2. Selection of Seams

Taped and welded seams are appropriate when the seams will come into contact with liquid chemicals under pressure or when there is sufficient liquid to form pools, puddles or run-off on the garment. Garments made from impervious film fabrics should have welded or taped seams to prevent liquids from entering through the seams when significant contact with liquids is expected. Sewn, serged or bound seams without sealing tape should only be considered in situations which involve minimum liquid volumes and minimum contact pressure. Sewn, serged or bound seams are normally found on most garments made from uncoated fabrics, microporous film fabrics, and some garment made with lightweight impervious film fabrics.

3. Selection of Design

The most common form of chemical and flame resistant clothing is the coverall. However, full body protection can also be obtained with the combination of jacket and bib overalls, or a shirt and pants combination. The protection provided by the garment closure and interface areas between garments should be considered when selecting PPE. Closures and interface areas (i.e., glove to jacket) provide a potential point of entry for hazards. If significant liquid contact is expected, the closure and interface areas should be minimized and provide the same level of protection as the rest of the garment. If less than full body protection is acceptable, partial body garments present a significantly lower heat stress impact than full body coveralls. There are many job activities associated with this response where the worker will have localized exposure to contaminated materials or fire. Partial body garments, such as sleeves, aprons, pants and shirts, can help protect those parts of the body that will be potentially exposed, such as forearms, front of the body or legs.

Note: Workers should remove gloves, and any other PPE that could contaminate food or drink, and thoroughly wash their hands with soap and water before eating. Workers should also remove all PPE before leaving the contaminated area at the end of the shift to reduce take-home exposure.

 
Contact Us:
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC-INFO