

Review of NIOSH's Program Evaluation Report DCAS-PER-067, "Allegheny Ludlum Appendix Q Revision"

Amy Mangel, MS, CHP, SC&A, Inc.

Advisory Board on Radiation and Worker Health, Subcommittee for Procedure Reviews

November 16, 2023

Address the impacts of issuing revision 1 of Appendix Q to Battelle-TBD-6000 (TBD-6000) for Allegheny Ludlum Steel Plant (AL) on previously completed cases

AL background

- ◆ AL rolled solid uranium rods for AEC in 1951 and 1952
- Additional metalworking activities included straightening, lathe work, cutting with shears, and stamping
- Total of 16 discrete rolling campaigns
- A salt bath furnace was introduced December 1, 1951
 - reduced oxidation of the uranium
 - reduced the amount of airborne uranium

- EEOICPA covered period from 1951 to 1952
- No residual period after 1952

Observation 1

Incorrect date for end of Atomic Weapons Employer (AWE) operational period

 When discussing the lack of a residual period, section Q.6 of Appendix Q, rev. 1, appears to incorrectly give the date of the end of operations as 1951 when it should be 1952.

Subtask 1: Changes necessitating PER

- Revision 1 of Appendix Q eliminated job categories so that the same estimate is used for all employees
- More details about rolling campaigns included in revision 1
- Inhalation intakes increased for many of the former job categories
- Ingestion intakes and external dose estimates increased for all former job categories

Subtask 2: Assess corrective action methods

- SC&A's review of PER-067 focused on the changes in rev. 1 of Appendix Q
- The review included an evaluation of Appendix Q guidance on internal and external dose reconstruction
 - Neither version of Appendix Q had been previously evaluated by SC&A

Additional rolling campaign information

- NIOSH located additional dates and information for uranium rolling campaigns in 1951 and 1952
 - Rolling campaign information is summarized in table Q.1 of Appendix Q, revision 1

SC&A comments on rolling campaigns

- Table Q.1 of Appendix Q states that the first rolling campaign on January 20, 1951, rolled 25 ingots
- SC&A reviewed SRDB document 10885 and found information to suggest that a total of 40 ingots were rolled on this campaign
- Dose estimate calculations in Appendix Q are based on air concentration data and are not dependent on the number of ingots rolled on a given workday, so this potential discrepancy does not affect the dose estimates

Observation 2

Discrepancy in the number of ingots rolled during January 20, 1951, campaign

 There appears to be a discrepancy in the number of ingots rolled during the first rolling campaign. However, it is SC&A's understanding that this does not affect the intake estimates.

Uranium air concentration data

Pre-salt-bath time period

- ◆ Before 12/1/1951
- Based on air monitoring data from rolling campaigns on 1/21/1951 and 7/22/1951
- Geometric mean (GM) of 291 dpm/m³

Post-salt-bath time period

- 12/1/1951 and after
- Based on air monitoring data from one rolling campaign on 2/9/1952
- ◆ GM of 20.5 dpm/m³

Calculating inhalation intakes

- Job categories eliminated, inhalation intake rate the same for all workers
- NIOSH assumed 8.8-hour workday
- For non-rolling days, NIOSH assumed the higher airborne activity concentration of 291 dpm/m³ was allowed to deposit for 30 days at a rate of 0.00075 m/s, with a resuspension factor of 1E-05.

SC&A comments on inhalation intakes

- Confirmed that inhalation intake rate is not dependent on claimant's job title
- Unclear how inhalation intakes would have been assigned using rev. 0 of Appendix Q; therefore, it is difficult to determine if the inhalation intakes using rev. 1 are, in fact, higher for most of the former job categories
- SC&A able to match NIOSH's calculations for the GM uranium air concentrations
- SC&A also confirmed NIOSH used the guidance from section 3.4.2 of TBD-6000 to calculate deposited surface contamination

Consistency with air concentration data

SC&A searched for other AWE sites with a similar operational history as AL to determine if uranium air monitoring data are used consistently between similar AWE sites

Bliss and Laughlin Steel is a similar site

Uranium air concentration data – comparison to Bliss and Laughlin

- Bliss and Laughlin (BL) also performed uranium rod machining and straightening from 1951 to 1952
 - Appendix D of TBD-6000
- Appendix D analyzed 13 breathing zone (BZ) samples and 7 general area air samples for intake calculations
 – GM of 2,602 dpm/m³
- GM of 2,602 dpm/m³ much lower than 5,480 dpm/m³ from TBD-6000, table 7.5
- Because of the limited number of air samples, NIOSH used the air concentration from TBD-6000 to determine inhalation and ingestion intakes for BL, as it was determined to be more claimant favorable

Representativeness of AL air monitoring data

Smaller proportion of AL air monitoring samples were BZ

-5 out of 43 samples in 1951

- -0 out of 48 samples in 1952
- Unclear if available samples represent the full range of uranium air concentrations encountered by AL workers
- AL values of 291 dpm/m³ and 20.5 dpm/m³ are significantly lower than values in TBD-6000 and those used for BL

Observation 3

Inconsistency with NIOSH's approach to calculating uranium intakes from air sampling data

- The methods to utilize air sampling data for the purpose of reconstructing uranium intakes are different between two uranium rolling sites (AL and BL)
- SC&A requests clarification on the different approaches

Calculating ingestion intakes

- PER-067 states ingestion intakes in rev. 1 increased for all former job categories
- NIOSH used OCAS-TIB-009 to calculate ingestion intakes
 - Stated that this approach would likely overestimate the actual ingestion intake, as TIB-009 assumes operations occurred often enough for airborne contamination levels to reach a maximum
- NIOSH calculated an ingestion intake of 39.9 dpm/calendar day
 - Used air concentration of 291 dpm/m³, factor of 0.2 from TIB-009, and converted to per calendar day

SC&A comments on ingestion intakes

- Confirmed rev. 1 ingestion intakes are higher than those for various job categories in rev. 0
- 0.2 adjustment factor from TIB-009 assumes an 8-hour work day
 - AL inhalation intake calculations assume an 8.8-hour work day
 - SC&A believes ingestion and inhalation intake assumptions should be consistent
- Correcting for an 8.8-hour work day results in a
 1.7 dpm/calendar day increase in ingestion intake rate

Observation 4

Assumed work day length for ingestion calculations inconsistent with assumed work day length for inhalation calculations

- TIB-009 factor is based on an 8-hour day and that it would be appropriate for consistency to modify the TIB-009 factor to the 8.8 hours per day assumed for AL
- However, the slightly lower calculated intake is offset by the other conservative assumptions in the ingestion model

External dose estimate

- PER-067 states external dose estimates increased in rev. 1
- No external dosimetry records found for AL
- Rev. 1 uses TBD-6000 to estimate external dose at AL from U metal
 - Assumes operators exposed to TBD-6000 1-foot dose rates 50% of the time
 - Assumes hands and forearms exposed to TBD-6000 contact dose rates 50% of the time
- Also includes external dose from deposited residual contamination
 - Uses conversion factors from TBD-6000, workers exposed 100% of each work day

SC&A comments on external dose

- Confirmed that external dose increased in rev. 1
- Confirmed NIOSH used the 1-foot photon dose rate from a rectangular ingot from TBD-6000, table 6.1
 - Assumed the beta dose rate is 10 times higher, per section 6.3 of TBD-6000
- Confirmed the contact beta dose rate came from section 6.3 of TBD-6000
- Confirmed the assumed fractions of time workers exposed to 1-foot and contact dose rates from metal are consistent with TBD-6000 guidance

Occupational medical dose

- No information specific to AL was found in rev. 1 of Appendix Q
- Unchanged guidance to refer to ORAUT-OTIB-0006, rev. 04, for assigning occupational medical dose in dose reconstructions
- SC&A agrees with the guidance to use OTIB-0006 in the absence of AL-specific information

Subtask 3: PER selection criteria

All completed claims with verified employment at AL with a probability of causation (POC) less than 50%
 – 26 claims

 One claim used rev. 1 of Appendix Q already and was removed from further evaluation

-25 claims

NIOSH's evaluation of impacted claims

25 claims reevaluated using rev. 1 of Appendix Q

- ◆ 23 claims POC below 45%
- ◆ 2 claims POC greater than 52%
- NIOSH requested the return of the 2 claims from U.S. Department of Labor

Subtask 4: Audit of reevaluated DRs

SC&A recommends that the Board select two cases of the 25 evaluated by NIOSH

- 1. One case involving a worker whose employment includes rolling campaigns with and without a salt bath
- One case involving a worker whose previous job category (such as administrative) in the old dose reconstruction (DR) led to a lower intake

