National Institute for Occupational Safety and Health

Discussion of Metals and Controls Petitioner Comments

NIOSH

Brant Ulsh, Ph.D., CHP NIOSH, Research Health Physicist

Advisory Board on Radiation and Worker Health

Metals and Controls Work Group Meeting July 13, 2023

Overview

- Introduction
- Comparability of drain cleaning: D&D vs M&C maintenance workers
- Subsurface outside use of blended D&D characterization survey data
 - Inside data
 - Outside blended survey data
 - Use of Mound dust loading data
- Conclusions

Introduction

Introduction – Petitioner Comments

- The petitioner for SEC 236 submitted written comments dated 2023-05-27
- This presentation provides NIOSH responses to these comments
- The petitioner's comments concerned two main points:
 - Comparability of drain cleaning: D&D vs M&C maintenance workers, and
 - Subsurface outside use of blended D&D characterization survey data

Introduction – NIOSH bounding methods (1 of 2)

- NIOSH's method to bound internal doses from subsurface contamination during the residual period:
 - Indoor source term estimated from 1996 sediment survey (targeted to areas of likely contamination)
 - Includes soil data around a fuel rod in a drain line
 - Intakes based on 95th percentile sediment concentration 6887 pCi/g (~1% of the specific activity of natural uranium)

Introduction - NIOSH bounding methods (2 of 2)

- NIOSH's method to bound internal doses from subsurface contamination during the residual period:
 - Outdoor source term based on surveys targeted to areas of likely contamination
 - Intakes also based on 95th percentile Mound dust loading
 - NIOSH assumes all subsurface soil and piping are at 95th percentile concentration, even though >80% of operational source term (Naval Reactors, High Flux Isotope Reactor), and none of the source term added during residual period (HFIR) was covered

Comparability of Drain Cleaning: D&D vs M&C Maintenance Workers

Training and Monitoring

- "...the health physics awareness training and monitoring provided for the D&D workers did not exist for the AWE Residual Period maintenance workers..."
- NIOSH is not basing our internal dose bounding method on an assumption that training and monitoring was the same for maintenance and D&D workers
 - Our bounding method is based on a source term calculation that bounds both Maintenance and D&D workers. It is not affected by worker training assumptions

Different Methods / Different Tasks

- "...the methods and means of performing the tasks were completely different ..."
- NIOSH is not basing our internal dose bounding method on an assumption that tasks were the same for maintenance and D&D workers
 - Our bounding method is consistent with intrusive activities performed by both Maintenance and D&D workers

Contact with Source Term

- "...tasks were completely different and placed the Residual Period maintenance workers in much more intimate contact with the residual contamination..."
- NIOSH is not basing our internal dose bounding method on an assumption that exposure potential was the same for maintenance and D&D workers
 - Our bounding method assumes intimate contact with the source term for Maintenance workers
 - We are not assuming use of PPE, respiratory protection, or engineering controls

Risk of Exposure

- "...tasks were completely different and placed the Residual Period maintenance workers...at higher risk of elevated exposure to residual radiation..."
- NIOSH is not basing our internal dose bounding method on an assumption that exposure potential was the same for maintenance and D&D workers
 - Our models reflect the work Maintenance workers performed, e.g. welding/grinding work, HVAC filter changes

Maintenance Worker Internal Exposure > D&D

- NIOSH has air monitoring and bioassay data from the D&D activities at M&C
- NIOSH's bounding internal dose method results in internal doses that are larger than the D&D monitoring data suggest. Therefore, the maintenance workers are assigned higher doses than the D&D workers, as the petitioner asserts they should be

Subsurface Outside – Use of Blended D&D Characterization Survey Data

Inside vs. Outside

- Petitioner quoted SC&A Finding 1 (8/22/22): "The back application of a high 1995 sediment survey result to bound inside subsurface activities is not adequately supported by information for M&C worker activities from the earlier residual time period" (emphasis added)
- There was no data blending for the inside subsurface model.
 The inside data is separate from the outside data
- Regarding inside data...

Bounding Scenario

- The presence of the fuel pin in the pipe indicates that we have captured the worst case scenario with the 95th percentile
 - We are unaware of a plausible scenario that would result in a higher source term estimate
- The survey data targeted contaminated areas. It is not a random data set. Therefore we are even more confident that the 95th percentile is favorable
- We assume all the subsurface soil and piping are at 95th percentile concentration, even though >80% of original source term and none of the source term added during residual period was covered 15

Precedent for Back Application of Data

- We propose to use survey data from 1996 throughout the residual period (1968-1997). Similar to:
 - Chapman Valve (soil data from 1987, and 1992 applied back to 1949)
 - Diverse, intrusive work, similar to the situation at M&C
 - Linde (data from 2001 applied to 1970-2006)
 - Subsurface maintenance utility work, confined spaces
 - Vitro (air data from 1977 applied to 1965 1985)

Hot Spots (1 of 2)

Petitioner quoted SC&A Observation 1 (8/22/22): "The use of blended D&D characterization survey data from 1984 and 1992 to support a bounding dose from outside subsurface activities may not be necessarily bounding for work in nonuniform soil contamination, given the presence of hot spots that existed during the residual period at M&C" (emphasis added)

Hot Spots (2 of 2)

- We are modeling representative exposures and hot spots are included in the data set.
- Basing modeling only on hot spots would result in implausibly high doses
- We use the 95th percentile (data includes hot spots), a claimant-favorable method consistent with precedents from numerous other similar sites

Application of Mound Dust Loading (1 of 2)

Petitioner quoted SC&A Finding 2 (8/22/22): "The application of surrogate data from the Mound project to provide a dustloading factor for M&C subsurface activities does not satisfy the Board's surrogate data policy"

Application of Mound Dust Loading (2 of 2)

- SC&A conducted an independent evaluation and came up with a similar dust loading estimate. SC&A previously agreed that Mound data could be applied to M&C
- NIOSH agreed with SC&A that Mound dust loading data would not necessarily apply at every site
- The application of outdoor dust loading data to inside environments (including confined spaces) is a TBD issue, not an SEC issue

Conservatism of 95th Percentile Soil Contamination (1 of 2)

 Petitioner quoted SC&A Observation 2 (8/22/22): References to the M&C safety and health manual, NRC inspection results, operator training, and other programmatic considerations do not necessarily substantiate the conservatism of the 95th percentile soil contamination value being applied."

Conservatism of 95th Percentile Soil Contamination (2 of 2)

- NIOSH is not substantiating the 95th percentile soil contamination value by relying on those documents. The conservatism of the 95th percentile soil contamination value is based on sampling data targeted to contaminated areas
- The conservatism of the 95th percentile intake value does not take credit for work practices, PPE, training, or the robustness of the radiation protection program

Conclusions (1 of 3)

- NIOSH modeled intake is a function of:
 - Source term
 - Resuspension factor/dust loading
 - Occupancy/time
- NIOSH modeled intake is NOT impacted by:
 - Training/knowledge of hazards (assumes none)
 - PPE (assumes none)
 - Monitoring (assumes none)

Conclusions (2 of 3)

- NIOSH's method to bound internal doses from subsurface contamination during the residual period:
 - NIOSH assumes all of the subsurface soil and piping are at 95th percentile concentration, even though >80% of original source term (Naval Reactors, HFIR), and none of the source term added during residual period was covered (HFIR)
 - NIOSH assumes all workers are occupationally exposed or in close contact with the 95th percentile concentration.
 - The petitioner's comments do not affect NIOSH's internal dose bounding estimate

Conclusions (3 of 3)

- Data have been back extrapolated to cover residual periods at other sites with Board concurrence, as we propose to do at M&C
- No plausible bounding scenario higher than the fuel pin in the pipe has been identified or proposed by the Working Group
- NIOSH's bounding internal dose estimate makes multiple favorable assumptions. It is not plausible that workers' exposures were higher than these assumptions suggest
 - NIOSH's bounding estimate is sufficiently accurate it is based on source term data from M&C

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

