Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Occupational radon exposure and lung cancer mortality: estimating intervention effects using the parametric g-formula.

Authors
Edwards-JK; McGrath-LJ; Buckley-JP; Schubauer-Berigan-MK; Cole-SR; Richardson-DB
Source
Epidemiology 2014 Nov; 25(6):829-834
NIOSHTIC No.
20045161
Abstract
BACKGROUND: Traditional regression analysis techniques used to estimate associations between occupational radon exposure and lung cancer focus on estimating the effect of cumulative radon exposure on lung cancer. In contrast, public health interventions are typically based on regulating radon concentration rather than workers' cumulative exposure. Estimating the effect of cumulative occupational exposure on lung cancer may be difficult in situations vulnerable to the healthy worker survivor bias. METHODS: Workers in the Colorado Plateau Uranium Miners cohort (n = 4,134) entered the study between 1950 and 1964 and were followed for lung cancer mortality through 2005. We use the parametric g-formula to compare the observed lung cancer mortality to the potential lung cancer mortality had each of 3 policies to limit monthly radon exposure been in place throughout follow-up. RESULTS: There were 617 lung cancer deaths over 135,275 person-years of follow-up. With no intervention on radon exposure, estimated lung cancer mortality by age 90 was 16%. Lung cancer mortality was reduced for all interventions considered, and larger reductions in lung cancer mortality were seen for interventions with lower monthly radon exposure limits. The most stringent guideline, the Mine Safety and Health Administration standard of 0.33 working-level months, reduced lung cancer mortality from 16% to 10% (risk ratio = 0.67 [95% confidence interval = 0.61 to 0.73]). CONCLUSIONS: This work illustrates the utility of the parametric g-formula for estimating the effects of policies regarding occupational exposures, particularly in situations vulnerable to the healthy worker survivor bias.
Keywords
Epidemiology; Cancer; Lung-cancer; Chronic-exposure; Employee-exposure; Occupational-exposure; Analytical-methods; Analytical-processes; Mortality-data; Mortality-rates; Mortality-surveys; Exposure-limits; Standards; Mathematical-models; Toxic-gases; Radioactive-decay; Gases
Contact
Jessie K. Edwards, University of North Carolina at Chapel Hill, McGavran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599-7435
CODEN
EPIDEY
CAS No.
10043-92-2
Publication Date
20141101
Document Type
Journal Article
Email Address
jessedwards@unc.edu
Fiscal Year
2015
NTIS Accession No.
NTIS Price
Identifying No.
M102014
Issue of Publication
6
ISSN
1044-3983
NIOSH Division
DSHEFS
Priority Area
Manufacturing; Mining
Source Name
Epidemiology
State
NC; OH
TOP