Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

The effect of tungstate nanoparticles on reactive oxygen species and cytotoxicity in Raw 264.7 mouse monocyte macrophage cells.

Authors
Dunnick-KM; Badding-MA; Schwegler-Berry-D; Patete-JM; Koenigsmann-C; Wong-SS; Leonard-SS
Source
J Toxicol Environ Health, A 2014 Oct; 77(20):1251-1268
NIOSHTIC No.
20045029
Abstract
Due to their unique size, surface area, and chemical characteristics, nanoparticles' use in consumer products has increased. However, the toxicity of nanoparticle (NP) exposure during the manufacturing process has not been fully assessed. Tungstate NP are used in numerous products, including but not limited to scintillator detectors and fluorescent lighting. As with many NP, no apparent toxicity studies have been completed with tungstate NP. The hypothesis that tungstate NP in vitro exposure results in reactive oxygen species (ROS) formation and cytotoxicity was examined. Differences in toxicity based on tungstate NP size, shape (sphere vs. wire), and chemical characteristics were determined. RAW 264.7 mouse monocyte macrophages were exposed to tungstate NP, and ROS formation was assessed via electron spin resonance (ESR), and several assays including hydrogen peroxide, intracellular ROS, and Comet. Results showed ROS production induced by tungstate nanowire exposure, but this exposure did not result in oxidative DNA damage. Nanospheres showed neither ROS nor DNA damage following cellular exposure. Cells were exposed over 72 h to assess cytotoxicity using an MTT (tetrazolium compound) assay. Results showed that differences in cell death between wires and spheres occurred at 24 h but were minimal at both 48 and 72 h. The present results indicate that tungstate nanowires are more reactive and produce cell death within 24 h of exposure, whereas nanospheres are less reactive and did not produce cell death. Results suggest that differences in shape may affect reactivity. However, regardless of the differences in reactivity, in general both shapes produced mild ROS and resulted in minimal cell death at 48 and 72 h in RAW 264.7 cells.
Keywords
Nanotechnology; Cytotoxicity; Cytotoxic-effects; Tungsten-compounds; Metallic-compounds; Cell-cultures; Cell-culture-techniques; Cellular-reactions; Laboratory-animals; Laboratory-testing; Exposure-assessment; Oxidative-processes; In-vitro-study; Cell-damage; Bioassays; Analytical-processes
Contact
Katherine M. Dunnick, NIOSH, HELD, PPRB, 1095 Willowdale Rd, Morgantown, WV 26505, USA
CODEN
JTEHD6
CAS No.
7440-33-7
Publication Date
20141001
Document Type
Journal Article
Email Address
kdunnick@mix.wvu.edu
Fiscal Year
2015
NTIS Accession No.
NTIS Price
Identifying No.
M092014
Issue of Publication
20
ISSN
1528-7394
NIOSH Division
HELD
Priority Area
Manufacturing
Source Name
Journal of Toxicology and Environmental Health, Part A: Current Issues
State
WV; NY
TOP