Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

The impact of UVB exposure and differentiation state of primary keratinocytes on their interaction with quantum dots.

Authors
Mortensen-LJ; Ravichandran-S; DeLouise-LA
Source
Nanotoxicology 2013 Nov; 7(7):1244-1254
NIOSHTIC No.
20044286
Abstract
In this study we utilised an in vitro model system to gain insight into the potential cellular interactions that quantum dot (QD) nanoparticles may experience while transiting the viable skin epidermis, and we consider the effects of UVB exposure. UVB skin exposure is known to induce a skin barrier defect that facilitates QD stratum corneum penetration. Primary human keratinocytes were cultured in low and high calcium to induce basal and differentiated phenotypes, respectively. Results suggest that differentiation state plays a role in keratinocyte response to UVB exposure and exposure to negatively charged CdSe/ZnS core/shell QD. QD cell uptake increased with QD dose but association with differentiated cells was significantly lower than the basal keratinocyte phenotype. Differentiated keratinocytes were also less sensitive to the cytotoxic effects of UVB exposure. We did not observe an effect of UVB preexposure on QD cytotoxicity level despite the fact that fluorescent microscopy and flow cytometry data suggest that UVB may slightly increase QD uptake in the basal cell phenotype. The implications of these findings for assessing potential risk of human skin exposure are discussed.
Keywords
Nanotechnology; Skin; Skin-exposure; Environmental-exposure; Cosmetics; Humans; Men; Women; Diseases; Dermatology; In-vitro-study
Contact
Lisa A. DeLouise, Department of Dermatology, University of Rochester, Rochester, NY 14642 USA
Publication Date
20131101
Document Type
Journal Article
Email Address
Lisa_DeLouise@urmc.rochester.edu
Funding Type
Grant
Fiscal Year
2014
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R21-OH-009970
Issue of Publication
7
ISSN
1743-5390
Source Name
Nanotoxicology
State
NY
Performing Organization
University of Rochester, New York
TOP