Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Effect of fiber length on carbon nanotube-induced fibrogenesis.

Authors
Manke-A; Luanpitpong-S; Dong-C; Wang-L; He-X; Battelli-L; Derk-R; Stueckle-TA; Porter-DW; Sager-T; Guo-H; Dinu-CZ; Wu-N; Mercer-RR; Rojanasakul-Y
Source
Int J Mol Sci 2014 Apr; 15(5):7444-7461
NIOSHTIC No.
20044249
Abstract
Given their extremely small size and light weight, carbon nanotubes (CNTs) can be readily inhaled by human lungs resulting in increased rates of pulmonary disorders, particularly fibrosis. Although the fibrogenic potential of CNTs is well established, there is a lack of consensus regarding the contribution of physicochemical attributes of CNTs on the underlying fibrotic outcome. We designed an experimentally validated in vitro fibroblast culture model aimed at investigating the effect of fiber length on single-walled CNT (SWCNT)-induced pulmonary fibrosis. The fibrogenic response to short and long SWCNTs was assessed via oxidative stress generation, collagen expression and transforming growth factor-beta (TGF-beta) production as potential fibrosis biomarkers. Long SWCNTs were significantly more potent than short SWCNTs in terms of reactive oxygen species (ROS) response, collagen production and TGF-beta release. Furthermore, our finding on the length-dependent in vitro fibrogenic response was validated by the in vivo lung fibrosis outcome, thus supporting the predictive value of the in vitro model. Our results also demonstrated the key role of ROS in SWCNT-induced collagen expression and TGF-beta activation, indicating the potential mechanisms of length-dependent SWCNT-induced fibrosis. Together, our study provides new evidence for the role of fiber length in SWCNT-induced lung fibrosis and offers a rapid cell-based assay for fibrogenicity testing of nanomaterials with the ability to predict pulmonary fibrogenic response in vivo.
Keywords
Nanotechnology; Fibrous-bodies; Fibrogenesis; Carbon-compounds; Molecular-structure; Respiratory-system-disorders; Pulmonary-system-disorders; Lung-fibrosis; Fibrogenicity; Physical-properties; Chemical-properties; In-vitro-study; Oxidative-processes; Biomarkers; Bioassays; Cell-alteration; Cell-cultures; Cellular-reactions; Author Keywords: carbon nanotubes; fiber length; lung fibrosis; ROS; type I collagen; TGF-beta
Contact
Yon Rojanasakul, Department of Pharmaceutical Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506, USA
CODEN
IJMCFK
CAS No.
7440-44-0
Publication Date
20140429
Document Type
Journal Article
Email Address
yrojan@hsc.wvu.edu
Fiscal Year
2014
NTIS Accession No.
NTIS Price
Identifying No.
M052014
Issue of Publication
5
ISSN
1422-0067
NIOSH Division
HELD
Priority Area
Manufacturing
Source Name
International Journal of Molecular Sciences
State
WV
TOP