Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Analysis of the effects of surface stiffness on the contact interaction between a finger and a cylindrical handle using a three-dimensional hybrid model.

Authors
Wu-JZ; Dong-RG; Warren-CM; Welcome-DE; McDowell-TW
Source
Med Eng Phys 2014 Jul; 36(7):831-841
NIOSHTIC No.
20044223
Abstract
Contact interactions between the hand and handle, such as the contact surface softness and contact surface curvature, will affect both physical effort and musculoskeletal fatigue, thereby the comfort and safety of power tool operations. Previous models of hand gripping can be categorized into two groups: multi-body dynamic models and finite element (FE) models. The goal of the current study is to develop a hybrid FE hand gripping model, which combines the features of conventional FE models and multi-body dynamic models. The proposed model is applied to simulate hand-gripping on a cylindrical handle with covering materials of different softness levels. The model included three finger segments (distal, middle, and proximal phalanxes), three finger joints (the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joint), and major anatomical substructures. The model was driven by joint moments, which are the net effects of all passive and active muscular forces acting about the joints. The finger model was first calibrated by using experimental data of human subject tests, and then applied to investigate the effects of surface softness on contact interactions between a finger and a cylindrical handle. Our results show that the maximal compressive stress and strain in the soft tissues of the fingers can be effectively reduced by reducing the stiffness of the covering material.
Keywords
Models; Hand-protection; Posture; Musculoskeletal-system; Extremities; Body-mechanics; Muscles; Muscle-function; Force; Stress; Author Keywords: Hand; Fingers; Handle; Multi-body dynamics; Finite element model; Soft tissues
Contact
John Z. Wu, NIOSH/CDC, 1095 Willowdale Road, MS-2027, Morgantown, WV 26505
CODEN
MEPHEO
Publication Date
20140701
Document Type
Journal Article
Fiscal Year
2014
NTIS Accession No.
NTIS Price
Identifying No.
M052014
Issue of Publication
7
ISSN
1350-4533
NIOSH Division
HELD
Priority Area
Construction
Source Name
Medical Engineering & Physics
State
WV
TOP