Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Directional control-response compatibility relationships assessed by physical simulation of an underground bolting machine.

Authors
Steiner-L; Burgess-Limerick-R; Porter-W
Source
Hum Factors 2014 Mar; 56(2):384-391
NIOSHTIC No.
20043705
Abstract
Objective: The authors examine the pattern of direction errors made during the manipulation of a physical simulation of an underground coal mine bolting machine to assess the directional control-response compatibility relationships associated with the device and to compare these results to data obtained from a virtual simulation of a generic device. Background: Directional errors during the manual control of underground coal roof bolting equipment are associated with serious injuries. Directional control-response relationships have previously been examined using a virtual simulation of a generic device; however, the applicability of these results to a specific physical device may be questioned. Method: Forty-eight participants randomly assigned to different directional control-response relationships manipulated horizontal or vertical control levers to move a simulated bolter arm in three directions (elevation, slew, and sump) as well as to cause a light to become illuminated and raise or lower a stabilizing jack. Directional errors were recorded during the completion of 240 trials by each participant. Results: Directional error rates are increased when the control and response are in opposite directions or if the direction of the control and response are perpendicular. The pattern of direction error rates was consistent with experiments obtained from a generic device in a virtual environment. Conclusion: Error rates are increased by incompatible directional control-response relationships. Application: Ensuring that the design of equipment controls maintains compatible directional control-response relationships has potential to reduce the errors made in high-risk situations, such as underground coal mining.
Keywords
Mining-industry; Mining-equipment; Underground-mining; Coal-mining; Coal-processing; Machine-operation; Simulation-methods; Control-systems; Manual-controls; Failure-analysis; Equipment-reliability; Humans; Equipment-design; Author Keywords: control errors; machinery; safety
Contact
Robin Burgess-Limerick, Minerals Industry Safety and Health Centre, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
CODEN
HUFAA6
Publication Date
20140301
Document Type
Journal Article
Email Address
r.burgesslimerick@uq.edu.au
Fiscal Year
2014
NTIS Accession No.
NTIS Price
Identifying No.
M022014
Issue of Publication
2
ISSN
0018-7208
NIOSH Division
OMSHR
Priority Area
Mining
Source Name
Human Factors
State
PA
TOP