Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Two-stage experimental design for dose-response modeling in toxicology studies.

Authors
Wang-K; Yang-F; Porter-DW; Wu-N
Source
ACS Sustain Chem Eng 2013 Sep; 1(9):1119-1128
NIOSHTIC No.
20043176
Abstract
The efficient design of experiments (i.e., selection of experimental doses and allocation of animals) is important to establishing dose-response relationships in toxicology studies. The proposed procedure for design of experiments is distinct from those in the literature because it is able to adequately accommodate the special features of the dose-response data, which include non-normality, variance heterogeneity, possibly nonlinearity of the dose-response curve, and data scarcity. The design procedure is built in a sequential two-stage paradigm that allows for a learning process. In the first stage, preliminary experiments are performed to gain information regarding the underlying dose-response curve and variance structure. In the second stage, the prior information obtained from the previous stage is utilized to guide the second-stage experiments. An optimization algorithm is developed to search for the design of experiments that will lead to dose-response models of the highest quality. To evaluate model quality (or uncertainty), which is the basis of design optimization, a bootstrapping method is employed; unlike standard statistical methods, bootstrapping is not subject to restrictive assumptions such as normality or large sample sizes. The design procedure in this paper will help to reduce the experimental cost/time in toxicology studies and alleviate the sustainability concerns regarding the tremendous new materials and chemicals.
Keywords
Toxicology; Dose-response; Laboratories; Laboratory-animals; Laboratory-testing; Laboratory-work; Mathematical-models; Models
Contact
Feng Yang, Department of Industrial and Management System Engineering, West Virginia University, Morgantown, West Virginia 26506
CODEN
ASCECG
Publication Date
20130901
Document Type
Journal Article
Email Address
feng.yang@mail.wvu.edu
Fiscal Year
2013
NTIS Accession No.
NTIS Price
Identifying No.
M102013
Issue of Publication
9
ISSN
2168-0485
NIOSH Division
HELD
Priority Area
Manufacturing
Source Name
ACS Sustainable Chemistry and Engineering
State
WV
TOP