Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Biomechanical loading of the shoulder complex and lumbosacral joints during dynamic cart pushing task.

Authors
Nimbarte-AD; Sun-Y; Jaridi-M; Hsiao-H
Source
Appl Ergon 2013 Sep; 44(5):841-849
NIOSHTIC No.
20042499
Abstract
The primary objective of this study was to quantify the effect of dynamic cart pushing exertions on the biomechanical loading of shoulder and low back. Ten participants performed cart pushing tasks on flat (0), 5, and 10 ramped walkways at 20 kg, 30 kg, and 40 kg weight conditions. An optoelectronic motion capturing system configured with two force plates was used for the kinematic and ground reaction force data collection. The experimental data was modeled using AnyBody modeling system to compute three-dimensional peak reaction forces at the shoulder complex (sternoclavicular, acromioclavicular, and glenohumeral) and low back (lumbosacral) joints. The main effect of walkway gradient and cart weight, and gradient by weight interaction on the biomechanical loading of shoulder complex and low back joints was statistically significant (all p < 0.001). At the lumbosacral joint, negligible loading in the mediolateral direction was observed compared to the anterioposterior and compression directions. Among the shoulder complex joints, the peak reaction forces at the acromioclavicular and glenohumeral joints were comparable and much higher than the sternoclavicular joint. Increased shear loading of the lumbosacral joint, distraction loading of glenohumeral joint and inferosuperior loading of the acromioclavicular joint may contribute to the risk of work-related low back and shoulder musculoskeletal disorder with prolonged and repetitive use of carts.
Keywords
Musculoskeletal-system; Musculoskeletal-system-disorders; Manual-materials-handling; Materials-handling; Biomechanics; Body-regions; Body-burden; Overloading; Articulation; Quantitative-analysis; Biological-effects; Biomechanical-modeling; Task-performance; Force; Weight-factors; Humans; Author Keywords: Pushing; Shoulder; Low back; Biomechanical loading
Contact
Ashish D. Nimbarte, Department of Industrial and Management Systems Engineering, PO Box 6070, West Virginia University, Morgantown, WV 26506-6107
CODEN
AERGBW
Publication Date
20130901
Document Type
Journal Article
Email Address
Ashish.Nimbarte@mail.wvu.edu
Fiscal Year
2013
NTIS Accession No.
NTIS Price
Identifying No.
B20130520
Issue of Publication
5
ISSN
0003-6870
NIOSH Division
DSR
Priority Area
Construction; Public Safety
Source Name
Applied Ergonomics
State
WV; NH
TOP