Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials.

Authors
Hirth-S; Cena-L; Cox-G; Tomovic-Z; Peters-T; Wohlleben-W
Source
J Nanoparticle Res 2013 Mar; 15(4):1504
NIOSHTIC No.
20042345
Abstract
Abstract: Nanocomposite materials may be considered as a low-risk application of nanotechnology, if the nanofillers remain embedded throughout the life-cycle of the products in which they are embedded. We hypothesize that release of free CNTs occurs by a combination of mechanical stress and chemical degradation of the polymer matrix. We experimentally address limiting cases: Mechanically released fragments may show tubular protrusions on their surface. Here we identify these protrusions unambiguously as naked CNTs by chemically resolved microscopy and a suitable preparation protocol. By size-selective quantification of fragments we establish as a lower limit that at least 95 % of the CNTs remain embedded. Contrary to classical fiber composite approaches, we link this phenomenon to matrix materials with only a few percent elongation at break, predicting which materials should still cover their CNT nanofillers after machining. Protruding networks of CNTs remain after photochemical degradation of the matrix, and we show that it takes the worst case combinations of weathering plus high-shear wear to release free CNTs in the order of mg/m2/year. Synergy of chemical degradation and mechanical energy input is identified as the priority scenario of CNT release, but its lab simulation by combined methods is still far from real-world validation.
Keywords
Nanotechnology; Polymers; Microscopy; Chemical-composition; Chemical-properties; Chemical-reactions; Chemical-structure; Fiber-deposition; Author Keywords: Nanocomposites; Degradation; Lifecycle; Characterization for toxicology purposes
CODEN
JNARFA
Publication Date
20130301
Document Type
Journal Article
Email Address
wendel.wohlleben@basf.com
Fiscal Year
2013
NTIS Accession No.
NTIS Price
Issue of Publication
4
ISSN
1388-0764
NIOSH Division
HELD
Source Name
Journal of Nanoparticle Research
State
WV; IA
TOP