Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Associations of multiple metals with kidney outcomes in lead workers.

Authors
Shelley-R; Kim-N-S; Parsons-P; Lee-B-K; Jaar-B; Fadrowski-J; Agnew-J; Matanoski-GM; Schwartz-BS; Steuerwald-A; Todd-A; Simon-D; Weaver-VM
Source
Occup Environ Med 2012 Oct; 69(10):727-735
NIOSHTIC No.
20041804
Abstract
OBJECTIVES: Environmental exposure to multiple metals is common. A number of metals cause nephrotoxicity with acute and/or chronic exposure. However, few epidemiologic studies have examined the impact of metal coexposure on kidney function. Therefore, the authors evaluated associations of antimony and thallium with kidney outcomes and assessed the impact of cadmium exposure on those associations in lead workers. METHODS: Multiple linear regression was used to examine associations between ln-urine thallium, antimony and cadmium levels with serum creatinine- and cystatin-C-based glomerular filtration measures and ln-urine N-acetyl--D-glucosaminidase (NAG). RESULTS: In 684 participants, median urine thallium and antimony were 0.39 and 0.36 g/g creatinine, respectively. After adjustment for lead dose, urine creatinine and kidney risk factors, higher ln-urine thallium was associated with higher serum creatinine- and cystatin-C-based estimates of glomerular filtration rate; associations remained significant after adjustment for antimony and cadmium (regression coefficient for serum creatinine-based estimates of glomerular filtration rate =5.2 ml/min/1.73 m2; 95% CI =2.4 to 8.0). Antimony associations with kidney outcomes were attenuated by thallium and cadmium adjustment; thallium and antimony associations with NAG were attenuated by cadmium. CONCLUSIONS: Urine thallium levels were significantly associated with both serum creatinine- and cystatin-C-based glomerular filtration measures in a direction opposite that expected with nephrotoxicity. Given similarities to associations recently observed with cadmium, these results suggest that interpretation of urine metal values, at exposure levels currently present in the environment, may be more complex than previously appreciated. These results also support multiple metal analysis approaches to decrease the potential for inaccurate risk conclusions.
Keywords
Humans; Men; Women; Environmental-exposure; Exposure-levels; Metals; Nephrotoxicity; Nephrotoxins; Epidemiology; Kidney-function; Antimony-compounds; Thallium-compounds; Cadmium-compounds; Lead-compounds; Urinalysis; Age-groups; Biomarkers; Analytical-processes; Renal-toxicity; Diseases; Metallurgy
Contact
Dr Virginia M Weaver, Division of Occupational & Environmental Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Rm. 7041, Baltimore, MD 21205
CODEN
OEMEEM
CAS No.
7440-36-0; 7440-28-0; 7440-43-9; 7439-92-1
Publication Date
20121001
Document Type
Journal Article
Email Address
vweaver@jhsph.edu
Funding Type
Grant
Fiscal Year
2013
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-T42-OH-008428; B20121218D
Issue of Publication
10
ISSN
1351-0711
Source Name
Occupational and Environmental Medicine
State
MD; NY; OH
Performing Organization
Johns Hopkins University
TOP