Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.

Authors
Kim-I-J; Hsiao-H; Simeonov-P
Source
Appl Ergon 2013 Jan; 44(1):58-64
NIOSHTIC No.
20040878
Abstract
Literature has shown a general trend that slip resistance performance improves with floor surface roughness. However, whether slip resistance properties are linearly correlated with surface topographies of the floors or what roughness levels are required for effective slip resistance performance still remain to be answered. This pilot study aimed to investigate slip resistance properties and identify functional levels of floor surface roughness for practical design applications in reducing the risk of slip and fall incidents. A theory model was proposed to characterize functional levels of surface roughness of floor surfaces by introducing a new concept of three distinctive zones. A series of dynamic friction tests were conducted using 3 shoes and 9 floor specimens under clean-and-dry as well as soapsuds-covered slippery wet environments. The results showed that all the tested floor-shoe combinations provided sufficient slip resistances performance under the clean-and-dry condition. A significant effect of floor type (surface roughness) on dynamic friction coefficient (DFC) was found in the soapsuds-covered wet condition. As compared to the surface roughness effects, the shoe-type effects were relatively small. Under the soapsuds-covered wet condition, floors with 50 Ám in Ra roughness scale seemed to represent an upper bound in the functional range of floor surface roughness for slip resistance because further increase of surface roughness provided no additional benefit. A lower bound of the functional range for slip resistance under the soapsuds-covered wet condition was estimated from the requirement of DFC > 0.4 at Ra = 17 Ám. Findings from this study may have potential safety implications in the floor surface design for reducing slip and fall hazards.
Keywords
Fall-protection; Injury-prevention; Accident-potential; Accident-prevention; Walking-surfaces; Floors; Surface-properties; Detergents; Materials-testing; Analytical-models; Footwear; Soap-products; Ergonomics; Human-factors-engineering; Fall-protection; Accidents; Injury-prevention; Injuries; Author Keywords: Floor surfaces; Roughness heights; Shoes; Slip resistance; Surface roughness
Contact
In-Ju Kim, Safety Research and Solutions, 70 William Hudson Crescent, Monash, ACT 2904, Australia
CODEN
AERGBW
Publication Date
20130101
Document Type
Journal Article
Email Address
slipsafety@gmail.com
Fiscal Year
2013
NTIS Accession No.
NTIS Price
Identifying No.
B06202012
Issue of Publication
1
ISSN
0003-6870
NIOSH Division
DSR
Priority Area
Construction
Source Name
Applied Ergonomics
State
WV
TOP