Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration.

Authors
Kapralov-AA; Feng-WH; Amoscato-AA; Yanamala-N; Balasubramanian-K; Winnica-DE; Kisin-ER; Kotchey-GP; Gou-P; Sparvero-LJ; Ray-P; Mallampalli-RK; Klein-Seetharaman-J; Fadeel-B; Star-A; Shvedova-AA; Kagan-VE
Source
ACS Nano 2012 May; 6(5):4147-4156
NIOSHTIC No.
20040811
Abstract
The pulmonary route represents one of the most important portals of entry for nanoparticles into the body. However, the in vivo interactions of nanoparticles with biomolecules of the lung have not been sufficiently studied. Here, using an established mouse model of pharyngeal aspiration of single-walled carbon nanotubes (SWCNTs), we recovered SWCNTs from the bronchoalveolar lavage fluid (BALf), purified them from possible contamination with lung cells, and examined the composition of phospholipids adsorbed on SWCNTs by liquid chromatography mass spectrometry (LC-MS) analysis. We found that SWCNTs selectively adsorbed two types of the most abundant surfactant phospholipids: phosphatidylcholines (PC) and phosphatidylglycerols (PG). Molecular speciation of these phospholipids was also consistent with pulmonary surfactant. Quantitation of adsorbed lipids by LC-MS along with the structural assessments of phospholipid binding by atomic force microscopy and molecular modeling indicated that the phospholipids (~108 molecules per SWCNT) formed an uninterrupted "coating" whereby the hydrophobic alkyl chains of the phospholipids were adsorbed onto the SWCNT with the polar head groups pointed away from the SWCNT into the aqueous phase. In addition, the presence of surfactant proteins A, B, and D on SWCNTs was determined by LC-MS. Finally, we demonstrated that the presence of this surfactant coating markedly enhanced the in vitro uptake of SWCNTs by macrophages. Taken together, this is the first demonstration of the in vivo adsorption of the surfactant lipids and proteins on SWCNTs in a physiologically relevant animal model.
Keywords
Nanotechnology; Pulmonary-system; Pulmonary-function; Lung; Lung-cells; Lung-function; Analytical-models; Analytical-processes; Surfactants; Lipids; Laboratory-animals; Laboratory-testing; Phospholipids; Liquid-chromatography; Mass-spectrometry; Alveolar-cells; Biochemical-analysis; Molecular-biology; Molecular-structure; Atomic-absorption-spectroscopy; Hydrophobic-bonds; Alkylamines; Proteins; In-vivo-study; Coatings; Author Keywords: carbon nanotubes; surfactant; macrophages
Contact
Valerian E. Kagan, Department of Environmental and Occupational Health, University of Pittsburgh, Bridgeside Point, 100 Technology Drive, Room 330, BRIDG, Pittsburgh, PA 15219-3130, USA
CODEN
ANCAC3
CAS No.
7440-44-0
Publication Date
20120522
Document Type
Journal Article
Email Address
kagan@pitt.edu
Funding Type
Grant
Fiscal Year
2012
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-008282; B06062012
Issue of Publication
5
ISSN
1936-0851
NIOSH Division
HELD
Priority Area
Manufacturing
Source Name
ACS Nano
State
PA; WV
Performing Organization
University of Pittsburgh at Pittsburgh
TOP