Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Evaluation of anti-vibration effectiveness of glove materials using an animal model.

Authors
Xu-XS; Riley-DA; Persson-M; Welcome-DE; Krajnak-K; Wu-JZ; Govinda Raju-SR; Dong-RG
Source
Bio-Med Mater Eng 2011 Jan; 21(4):193-211
NIOSHTIC No.
20040193
Abstract
Gloves with anti-vibration features are increasingly used to reduce impact vibrations or shocks transmitted to the hands of power tool operators. Selection and evaluation of the glove materials are important steps in the designs of such gloves. In the current study, we proposed an approach to objectively evaluate the effectiveness of the glove materials using a rat-tail impact model. As a critical part of a systematic investigation, we examined the vibration reduction characteristics of typical resilient glove materials (air bladders and viscoelastic gels) and the impact vibrations transmitted to the rat tail. A special test platform that mimics impact tool vibrations was constructed and used in the experiment. A scanning laser vibrometer was used to measure the vibration at points across the platform surface under several different test conditions. The peak acceleration was found to be greatly attenuated by the glove materials, especially by using strips from a gel-filled glove. The rat tail was found to effectively absorb the high-frequency vibration. However, the glove materials and the rat tail did not reduce the frequency-weighted acceleration. The implications of the experimental results are discussed.
Keywords
Hand-injuries; Hand-protection; Vibration; Vibration-exposure; Vibration-suppressors; Vibration-control; Gloves; Power-tools; Tools; Author Keywords: Hand arm vibration; animal model; rat-tail model; anti-vibration gloves; hand arm vibration syndrome
Contact
John Z. Wu, PhD, 1095 Willowdale Road, MS L-2027, Morgantown, WV 26505, USA
CODEN
BMENEO
Publication Date
20110101
Document Type
Journal Article
Email Address
jwu@cdc.gov
Fiscal Year
2011
NTIS Accession No.
NTIS Price
Issue of Publication
4
ISSN
0959-2989
NIOSH Division
HELD
Priority Area
Construction
Source Name
Bio-Medical Materials and Engineering
State
WV; WI
TOP