Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Global phospholipidomics analysis reveals selective pulmonary peroxidation profiles upon inhalation of single-walled carbon nanotubes.

Authors
Tyurina-YY; Kisin-ER; Murray-A; Tyurin-VA; Kapralova-VI; Sparvero-LJ; Amoscato-AA; Samhan-Arias-AK; Swedin-L; Lahesmaa-R; Fadeel-B; Shvedova-AA; Kagan-VE
Source
ACS Nano 2011 Sep; 5(9):7342-7353
NIOSHTIC No.
20039792
Abstract
It is commonly believed that nano materials cause nonspecific oxidative damage. Our mass spectrometry-based oxidative lipidomics analysis of all major phospholipid classes revealed highly selective patterns of pulmonary peroxidation after inhalation exposure of mice to single-walled carbon nanotubes. No oxidized molecular species were found in the two most abundant phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Peroxidation products were identified in three relatively minor classes of anionic phospholipids, cardiolipin, phosphatidylserine, and phosphatidylinositol, whereby oxygenation of polyunsaturated fatty acid residues also showed unusual substrate specificity. This nonrandom peroxidation coincided with the accumulation of apoptotic cells in the lung. A similar selective phospholipid peroxidation profile was detected upon incubation of a mixture of total lung lipids with H(2)O(2)/cytochrome c known to catalyze cardiolipin and phosphatidylserine peroxidation in apoptotic cells. The characterized specific phospholipid peroxidation signaling pathways indicate new approaches to the development of mitochondria-targeted regulators of cardiolipin peroxidation to protect against deleterious effects of pro-apoptotic effects of single-walled carbon nanotubes in the lung.
Keywords
Nanotechnology; Oxidative-processes; Mass-spectrometry; Phospholipids; Lipid-peroxidation; Lipids; Nanotubes; Pulmonary-system; Inhalation-studies; Animal-studies; Laboratory-animals; Laboratory-testing; Exposure-assessment; Exposure-levels; Exposure-methods; Peroxidases; Oxidative-phosphorylation; Fatty-acids; Cell-function; Cellular-reactions; Lung; Lung-cells; Author Keywords: single-walled carbon nanotubes; mouse lung; apoptosis; lipidomics; oxidative lipidomics; cardiolipin oxidation; phosphatidylserine oxidation
Contact
Valerian E. Kagan, University of Pittsburgh, Center for Free Radical and Antioxidant Health, Pittsburgh, PA 15260 USA
CODEN
ANCAC3
CAS No.
7440-44-0
Publication Date
20110901
Document Type
Journal Article
Email Address
kagan@pitt.edu
Funding Type
Grant
Fiscal Year
2011
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-008282; B10262011
Issue of Publication
9
ISSN
1936-0851
NIOSH Division
HELD
Priority Area
Manufacturing; Mining
Source Name
ACS Nano
State
PA; WV
Performing Organization
University of Pittsburgh at Pittsburgh
TOP