Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Elucidation of factors determining carbon nanotubes' ability to penetrate alveolar epithelial barrier and interact with lung fibroblasts in vitro.

Authors
Derk-R; Mishra-A; Stueckle-T; Rojanasakul-Y; Castranova-V; Wang-L
Source
Toxicologist 2011 Mar; 120(Suppl 2):253
NIOSHTIC No.
20038514
Abstract
Nanomaterials possess unique physicochemical and biological properties but can also exhibit different adverse reactions if inhaled. Our previous in vivo study showed upon alveolar deposition, dispersed single-walled carbon nanotubes (DSWCNT) rapidly enter interstitial area (1 day post-exposure) and induce interstitial fibrotic response as early as 1 week post-exposure. Direct stimulation of cultured lung fibroblasts, a major interstitial cell, by DSWCNT was shown to enhance proliferation and collagen production, a hallmark of lung fibrosis. Furthermore, penetration of DSWCNT through lung epithelial barrier into interstitium could be a key event of DSWCNT-induced interstitial fibrosis. To investigate this alveolar epithelial barrier, an experimental model was developed using immortalized human lung epithelial cell line (ATCC, Manassas, VA). Epithelial cells were cultured on the apical surface of TranswellŽ microporous membrane and exposed to non-dispersed SWCNT and DSWCNT. Samples from the apical compartment, cell monolayer, and basolateral compartment were collected at various times and analyzed for CNT penetrability. Electron microscopy and CytoViva hyperspectral imaging were used to aid characterization of the penetration pathway (paracellular vs. transcellular) of nanoparticles across alveolar epithelial membrane. The effect of CNT dispersion status on penetration rate was also assessed. Our data suggest CNT penetrated through epithelial cells on apical side and translocated to the other side of the Transwell membrane and the amount of CNT transferred, measured by hyperspectral imaging, was sufficient to induce fibroblast proliferation and collagen production based on previous data. The Transwell system is a suitable model for studying translocation of CNT across epithelial layer and aids in mechanistic studies of CNT- induced interstitial lung fibrosis.
Keywords
Biological-effects; Inhalation-studies; Lung-cells; Nanotechnology; Physiological-effects; Pulmonary-function; Pulmonary-system; Respiratory-hypersensitivity; Respiratory-irritants; Models
CAS No.
7440-44-0
Publication Date
20110301
Document Type
Abstract
Fiscal Year
2011
NTIS Accession No.
NTIS Price
ISSN
1096-6080
NIOSH Division
HELD
Priority Area
Manufacturing
Source Name
The Toxicologist. Society of Toxicology 50th Annual Meeting and ToxExpo, March 6-10, 2011, Washington, DC
State
DC; WV
TOP