Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Determination of the ratio of diffusion charging-based surface area to geometric surface area for spherical particles in the size range of 100-900 nm.

Authors
Ku-BK
Source
J Aerosol Sci 2010 Sep; 41(9):835-847
NIOSHTIC No.
20037155
Abstract
Diffusion charging-based surface area for spherical particles was measured and compared with geometric surface area in the submicrometer size ranging from 100 to 900 nm. Spherical aerosol particles (polystyrene latex particles (PSL) and droplets of diethylhexyl sebacate (DEHS)) were generated by electrosprays for 100 - 600 nm particles and by a condensation generator for 700 - 900 nm particles. Two commercially available diffusion chargers (DCs) (DC2000CE, Ecochem, USA; LQ1-DC, Matter Engineering, Switzerland) were challenged with monodisperse uncharged spherical aerosols. Results showed that the surface areas measured by the two DCs were proportional to mobility diameter to power 1.22 and 1.38, respectively, in the size range from 100 to 900 nm. Comparison of the DC-based surface area with theoretical active surface area resulted in reasonable agreement within +/-30%, indicating that the DCs underestimate geometric surface area of particles. The deviation of the DC-based surface area from the geometric surface area was quantitatively measured and was found to be up to 94% in the size range studied. Three types of aerosol particles were used to validate the correction of the DC deviation from the geometric surface area for particles larger than 100 nm based on the fit obtained for spherical particles in this study: spherical silver particles, carbon nanofibers, and titanium dioxide agglomerates. Comparison of the corrected DC-based surface area to Brunauer - Emmett - Teller (BET)-measured surface area indicated that the DC surface area reasonably agrees with the BET value for the particles tested except carbon nanofibers with 300 nm modal diameter.
Keywords
Nanotechnology; Aerosols; Aerosol-particles; Particulates; Analytical-instruments; Analytical-processes; Monitors; Sampling-equipment; Author Keywords: Diffusion charger; Aerosol; Active surface area; Geometric surface area; Spherical particles; BET
Contact
Bon Ki Ku, Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), 4676 Columbia Parkway, MS-R3, Cincinnati, OH 45226, USA
CODEN
JALSB7
Publication Date
20100901
Document Type
Journal Article
Email Address
BKu@cdc.gov
Fiscal Year
2010
NTIS Accession No.
NTIS Price
Issue of Publication
9
ISSN
0021-8502
NIOSH Division
DART
Priority Area
Manufacturing
Source Name
Journal of Aerosol Science
State
OH
TOP