Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies.

Authors
Johnson-DR; Methner-MM; Kennedy-AJ; Steevens-JA
Source
Environ Health Perspect 2010 Jan; 118(1):49-54
NIOSHTIC No.
20036349
Abstract
BACKGROUND: The potential exists for laboratory personnel to be exposed to engineered carbon-based nanomaterials (CNMs) in studies aimed at producing conditions similar to those found in natural surface waters [e.g., presence of natural organic matter (NOM)]. OBJECTIVE: The goal of this preliminary investigation was to assess the release of CNMs into the laboratory atmosphere during handling and sonication into environmentally relevant matrices. METHODS: We measured fullerenes (C60), underivatized multiwalled carbon nanotubes (raw MWCNT), hydroxylated MWCNT (MWCNT-OH), and carbon black (CB) in air as the nanomaterials were weighed, transferred to beakers filled with reconstituted freshwater, and sonicated in deionized water and reconstituted freshwater with and without NOM. Airborne nanomaterials emitted during processing were quantified using two hand-held particle counters that measure total particle number concentration per volume of air within the nanometer range (10-1,000 nm) and six specific size ranges (300-10,000 nm). Particle size and morphology were determined by transmission electron microscopy of air sample filters. DISCUSSION: After correcting for background particle number concentrations, it was evident that increases in airborne particle number concentrations occurred for each nanomaterial except CB during weighing, with airborne particle number concentrations inversely related to particle size. Sonicating nanomaterial-spiked water resulted in increased airborne nanomaterials, most notably for MWCNT-OH in water with NOM and for CB. CONCLUSION: Engineered nanomaterials can become airborne when mixed in solution by sonication, especially when nanomaterials are functionalized or in water containing NOM. This finding indicates that laboratory workers may be at increased risk of exposure to engineered nanomaterials.
Keywords
Airborne-dusts; Airborne-particles; Air-quality-measurement; Nanotechnology; Exposure-assessment; Exposure-levels; Exposure-methods; Hydroxides; Hydroxy-compounds; Hydroxylation-reactions; Laboratory-workers; Natural-products; Organic-compounds; Organic-dusts; Particle-counters; Particulates; Risk-analysis; Statistical-analysis; Author Keywords: aerosolization; ecotoxicology; multiwalled carbon nanotubes; nanomaterials; occupational exposure; sonication
Contact
David R. Johnson, U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd, Bldg 6011, Vicksburg, MS 39180
CODEN
EVHPAZ
CAS No.
7440-44-0; 1333-86-4
Publication Date
20100101
Document Type
Journal Article
Email Address
David.R.Johnson@usace.army.mil
Fiscal Year
2010
NTIS Accession No.
NTIS Price
Issue of Publication
1
ISSN
0091-6765
NIOSH Division
EID
Source Name
Environmental Health Perspectives
State
OH; MS
TOP