Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Investigating ozone-induced decomposition of surface-bound permethrin for conditions in aircraft cabins.

Authors
Coleman-BK; Wells-JR; Nazaroff-WW
Source
Indoor Air 2010 Feb; 20(1):61-71
NIOSHTIC No.
20036345
Abstract
The reaction of ozone with permethrin can potentially form phosgene. Published evidence on ozone levels and permethrin surface concentrations in aircraft cabins indicated that significant phosgene formation might occur in this setting. A derivatization technique was developed to detect phosgene with a lower limit of detection of 2 ppb. Chamber experiments were conducted with permethrin-coated materials (glass, carpet, seat fabric, and plastic) exposed to ozone under cabin-relevant conditions (150 ppb O-3, 4.5/h air exchange rate, < 1% relative humidity, 1700 ng/cm2 of permethrin). Phosgene was not detected in these experiments. Reaction of ozone with permethrin appears to be hindered by the electron-withdrawing chlorine atoms adjacent to the double bond in permethrin. Experimental results indicate that the upper limit on the reaction probability of ozone with surface-bound permethrin is similar to 10-7. Extrapolation by means of material-balance modeling indicates that the upper limit on the phosgene level in aircraft cabins resulting from this chemistry is similar to 1 mu g/m3 or similar to 0.3 ppb. It was thus determined that phosgene formation, if it occurs in aircraft cabins, is not likely to exceed relevant, health-based phosgene exposure guidelines. Practical Implications: Phosgene formation from ozone-initiated oxidation of permethrin in the aircraft cabin environment, if it occurs, is estimated to generate levels below the California Office of Environmental Health Hazard Assessment acute reference exposure level of 4 mu g/m3 or similar to 1 ppb.
Keywords
Aircraft; Air-quality; Air-quality-measurement; Chemical-binding; Chemical-composition; Chemical-deposition; Chemical-indicators; Chemical-properties; Chemical-reactions; Chemical-synthesis; Exposure-assessment; Exposure-levels; Exposure-methods; Health-hazards; Indoor-air-pollution; Indoor-environmental-quality; Laboratory-testing; Oxidative-processes; Quantitative-analysis; Sampling-methods; Surface-properties; Author Keywords: Permethrin; Ozone; Phosgene; Aircraft cabin; Surface chemistry; Oxidation byproducts
Contact
W. W. Nazaroff Department of Civil and Environmental Engineering University of California, Berkeley 661 Davis Hall Berkeley, CA 94720-1710
CODEN
INAIE5
CAS No.
10028-15-6
Publication Date
20100201
Document Type
Journal Article
Email Address
nazaroff@ce.berkeley.edu
Fiscal Year
2010
NTIS Accession No.
NTIS Price
Issue of Publication
1
ISSN
0905-6947
NIOSH Division
HELD
Source Name
Indoor Air
State
WV
TOP