Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin.

Authors
Ding-M; Zhao-JS; Bowman-L; Lu-YJ; Shi-XL
Source
Int J Oncol 2010 Jan; 36(1):59-67
NIOSHTIC No.
20036274
Abstract
Quercitrin, glycosylated form of flavonoid compounds, is widely distributed in nature. Extensive studies have demonstrated that quercitrin exhibits strong antioxidant and anti-carcinogenic activities. However, the molecular mechanism is poorly understood. The present study examines the effects of quercitrin on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Quercitrin blocked TPA-induced neoplastic transformation in JB6 P+ cells. Pretreatment of JB6 cells with quercitrin down-regulated transactivation of AP-1 and NF-kappa B induced by UVB or TPA. In the skin of AP-1-luciferase transgenic mice, topical treatment of the mouse with quercitrin markedly blocked the TPA-induced AP-1 transactivation. Further studies indicated that these inhibitory actions appear to be mediated through the inhibition of MAPKs phosphorylation, including ERKs, p38 kinase, and JNKs. In addition, quercitrin stimulated the activation of NF-E2-related factor (Nrf2) and GST ARE-luciferase activity. Comet assays showed that quercitrin could block DNA damage induced by UVB. To our knowledge, these results provide the first evidence that quercitrin contributes to the inhibition of neoplastic transformation by blocking activation of the MAPK pathway and stimulation of cellular protection signaling. Moreover, to our knowledge, these findings provide the first molecular basis for the anti-carcinogenic action of quercitrin.
Keywords
Antioxidants; Antioxidation; Cancer; Cell-biology; Cell-function; Cellular-function; Chronic-degenerative-diseases; Chronic-exposure; Laboratory-testing; Molecular-biology; Skin-cancer; Skin-diseases; Skin-tumors; Author Keywords: flavonoids; antioxidant; cell signaling; cancer prevention
Contact
Min Ding, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, CDC, 1095 Willowdale Road, Morgantown, WV 26505
CODEN
IJONES
Publication Date
20100101
Document Type
Journal Article
Email Address
mid5@cdc.gov
Fiscal Year
2010
NTIS Accession No.
NTIS Price
Issue of Publication
1
ISSN
1019-6439
NIOSH Division
HELD
Source Name
International Journal of Oncology
State
WV
TOP