Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Inertial microfluidics for continuous particle separation in spiral microchannels.

Authors
Kuntaegowdanahalli-SS; Bhagat-AA; Kumar-G; Papautsky-I
Source
Lab Chip 2009 Oct; 9(20):2973-2980
NIOSHTIC No.
20036119
Abstract
In this work we report on a simple inertial microfluidic device that achieves continuous multi-particle separation using the principle of Dean-coupled inertial migration in spiral microchannels. The dominant inertial forces coupled with the Dean rotational force due to the curvilinear microchannel geometry cause particles to occupy a single equilibrium position near the inner microchannel wall. The position at which particles equilibrate is dependent on the ratio of the inertial lift to Dean drag forces. Using this concept, we demonstrate, for the first time, a spiral lab-on-a-chip (LOC) for size-dependent focusing of particles at distinct equilibrium positions across the microchannel cross-section from a multi-particle mixture. The individual particle streams can be collected with an appropriately designed outlet system. To demonstrate this principle, a 5-loop Archimedean spiral microchannel with a fixed width of 500 microm and a height of 130 microm was used to simultaneously and continuously separate 10 microm, 15 microm, and 20 microm polystyrene particles. The device exhibited 90% separation efficiency. The versatility of the device was demonstrated by separating neuroblastoma and glioma cells with 80% efficiency and high relative viability (>90%). The achieved throughput of approximately 1 million cells/min is substantially higher than the sorting rates reported by other microscale sorting methods and is comparable to the rates obtained with commercial macroscale flow cytometry techniques. The simple planar structure and high throughput offered by this passive microfluidic approach make it attractive for LOC devices in biomedical and environmental applications.
Keywords
Biological-effects; Biological-function; Biological-monitoring; Fluid-mechanics; Force; Microscopic-analysis; Particle-accelerators; Particle-aerodynamics; Particulates; Physiological-effects; Physiological-function
Contact
Sathyakumar S. Kuntaegowdanahalli, Department of Electrical and Computer Engineering, 814 Rhodes Hall, ML030, University of Cincinnati, Cincinnati, OH 45221
CODEN
LCAHAM
Publication Date
20091021
Document Type
Journal Article
Funding Type
Grant
Fiscal Year
2010
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-T42-OH-008432
Issue of Publication
20
ISSN
1473-0197
Source Name
Lab on a Chip
State
OH
Performing Organization
University of Cincinnati
TOP