Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Nanoparticle-based electrochemical immunosensor for the detection of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphate pesticides and nerve agents.

Authors
Liu-G; Wang-J; Barry-R; Petersen-C; Timchalk-C; Gassman-PL; Lin-Y
Source
Chemistry 2008 Mar; 14(32):9951-9959
NIOSHTIC No.
20035054
Abstract
A nanoparticle-based electrochemical immunosensor has been developed for the detection of phosphorylated acetylcholinesterase (AChE), which is a potential biomarker of exposure to organophosphate (OP) pesticides and chemical warfare nerve agents. Zirconia nanoparticles (ZrO(2) NPs) were used as selective sorbents to capture the phosphorylated AChE adduct, and quantum dots (ZnS@CdS, QDs) were used as tags to label monoclonal anti-AChE antibody to quantify the immunorecognition events. The sandwich-like immunoreactions were performed among the ZrO(2) NPs, which were pre-coated on a screen printed electrode (SPE) by electrodeposition, phosphorylated AChE and QD-anti-AChE. The captured QD tags were determined on the SPE by electrochemical stripping analysis of its metallic component (cadmium) after an acid-dissolution step. Paraoxon was used as the model OP insecticide to prepare the phosphorylated AChE adducts to demonstrate proof of principle for the sensor. The phosphorylated AChE adduct was characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectroscopy. The binding affinity of anti-AChE to the phosphorylated AChE was validated with an enzyme-linked immunosorbent assay. The parameters (e.g., amount of ZrO(2) NP, QD-anti-AChE concentration,) that govern the electrochemical response of immunosensors were optimized. The voltammetric response of the immunosensor is highly linear over the range of 10 pM to 4 nM phosphorylated AChE, and the limit of detection is estimated to be 8.0 pM. The immunosensor also successfully detected phosphorylated AChE in human plasma. This new nanoparticle-based electrochemical immunosensor provides an opportunity to develop field-deployable, sensitive, and quantitative biosensors for monitoring exposure to a variety of OP pesticides and nerve agents.
Keywords
Agricultural-chemicals; Insecticides; Organo-phosphorus-compounds; Organo-phosphorus-pesticides; Biological-effects; Pesticides-and-agricultural-chemicals; Chemical-analysis; Chemical-synthesis; Qualitative-analysis; Chemical-hypersensitivity; Chemical-properties; Chemical-reactions; Chemical-warfare-agents; Nerve-function; Nervous-system-function; Parasympathetic-nervous-system; Immune-reaction; Immunochemistry; Electrochemical-analysis; Electrochemical-properties; Electrochemical-reactions; Nanotechnology
Contact
Yuehe Lin, Pacific Northwest National Laboratory, Richland, WA 99352
CODEN
CEUJED
Publication Date
20080307
Document Type
Journal Article
Email Address
guodong.liu@ndsu.edu & yuehe.lin@pnl.gov
Funding Type
Grant
Fiscal Year
2008
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-008173
Issue of Publication
32
ISSN
0947-6539
Priority Area
Agriculture, Forestry and Fishing
Source Name
Chemistry: A European Journal
State
WA
Performing Organization
Battelle Pacific Northwest Laboratories
TOP