Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

A possible role of multidrug resistance-associated protein 2 (Mrp2) in hepatic excretion of PCB126, an environmental contaminant: PBPK/PD modeling.

Authors
Lohitnavy-M; Lu-Y; Lohitnavy-O; Chubb-LS; Hirono-S; Yang-RS
Source
Toxicol Sci 2008 Jul; 104(1):27-39
NIOSHTIC No.
20034631
Abstract
3,3',4,4',5'-Pentachlorobiphenyl (PCB126) is a carcinogenic environmental pollutant and its toxicity is mediated through binding with aryl hydrocarbon receptor (AhR). Earlier, we found that PCB126 treated F344 rats had 110-400 times higher PCB126 concentration in the liver than in the fat. Protein binding was suspected to be a major factor for the high liver concentration of PCB126 despite its high lipophilicity. In this research, we conducted a combined pharmacokinetic/pharmacodynamic study in male F344 rats. In addition to blood and tissue pharmacokinetics, we use the development of hepatic preneoplastic foci (glutathione-S-transferase placental form [GSTP]) as a pharmacodynamic endpoint. Experimental data were utilized for building a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model. PBPK/PD modeling was consistent with the experimental PK and PD data. Salient features of this model include: (1) bindings between PCB126 and hepatic proteins, particularly the multidrug resistance-associated protein (Mrp2), a protein transporter; (2) Mrp2-mediated excretion; and (3) a relationship between area under the curve of PCB126 in the livers and % volume of GSTP foci. Mrp2 involvement in PCB126 pharmacokinetics is supported by computational chemistry calculation using a three-dimensional quantitative structure-activity relationship model of Mrp2 developed by S. Hirono et al. (2005, Pharm. Res. 22, 260-269). This work, for the first time, provided a plausible role of a versatile hepatic transporter for drugs, Mrp2, in the disposition of an important environmental pollutant, PCB126.
Keywords
Work-environment; Models; Mathematical-models; Hepatotoxicity; Hepatotoxins; Physiological-chemistry; Physiological-response; Physiopathology; Quantitative-analysis; Environmental-pollution; Chemical-hypersensitivity; Chemical-properties
Contact
Raymond S. H. Yang, Quantitative and Computational Toxicology Group, Department of Environmental and Radiological Health Sciences, Colorado State University, 137A Physiology Building, Fort Collins, CO 80523-1680
CODEN
TOSCF2
Publication Date
20080701
Document Type
Journal Article
Email Address
raymond.yang@colostate.edu
Funding Type
Grant
Fiscal Year
2008
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-T42-OH-008433
Issue of Publication
1
ISSN
1096-6080
Source Name
Toxicological Sciences
State
WA; CO
Performing Organization
University of Washington
TOP