Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Peripheral neuritis and increased spinal cord neurochemicals are induced in a model of repetitive motion injury with low force and repetition exposure.

Authors
Elliott-MB; Barr-AE; Kietrys-DM; Al-Shatti-T; Amin-M; Barbe-MF
Source
Brain Res 2008 Jul; 1218:103-113
NIOSHTIC No.
20034627
Abstract
Performance of high repetition tasks with or without force is associated with peripheral tissue inflammation, decreased nerve function and motor dysfunction. Here, we examined whether a low repetition task with negligible force (LRNF) produces fewer tissue and behavioral pathologies than previously observed with high repetition tasks using our rat model of repetitive motion injury (RMI). Thirty-seven rats were randomized into control or LRNF groups, the latter reaching and grasping a 45 mg food pellet at a rate of 3 reaches/min. This task was performed in 4, 0.5 5 h sessions with 1.5 5 h rest periods for 3 days/week for up to 12 weeks. Examination of distal median nerve, forelimb flexor tendons and bones for ED1-positive cells (macrophages and osteoclasts) revealed increases in nerve and bone in week 12. The nerve also contained increased TNF-alpha expressing cells in week 12. Examination of spinal cord dorsal horns revealed increased immunoexpression of Substance P in week 8 and neurokinin-1 in weeks 8 and 12 in the superficial lamina. Motor behavioral analyses showed no changes in reach rate across weeks, slightly reduced task duration (a measurement of voluntary task participation) in week 12, but significantly increased extra arm movement reversals during reaching in week 8. These extra movement reversals were corrections for missed food pellets during a reach. Thus, performance of even a low repetition, negligible force upper extremity task for 3 months can induce mild peripheral tissue inflammation, neurochemical increases in spinal cord dorsal horns, and declines in fine motor control.
Keywords
Musculoskeletal-system-disorders; Injuries; Epidemiology; Diseases; Laboratory-animals; Laboratory-testing; Sensory-motor-system; Sensory-disorders; Neuromotor-system-disorders; Neuromuscular-system-disorders; Neurological-diseases; Neuromotor-disorders; Neuromotor-function; Neuromotor-system; Spinal-cord; Repetitive-work; Motion-studies
Contact
Mary F. Barbe, Department of Physical Therapy, College of Health Professions, Department of Anatomy and Cell Biology, Temple Medical School, Temple University, 3307 North Broad St., Philadelphia, PA 19140
CODEN
BRREAP
Publication Date
20080707
Document Type
Journal Article
Email Address
mary.barbe@temple.edu
Funding Type
Grant
Fiscal Year
2008
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-003970
ISSN
0006-8993
Source Name
Brain Research
State
PA; NJ
Performing Organization
Temple University
TOP