Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

Authors
Anderson-DE; Madigan-ML; Nussbaum-MA
Source
J Biomech 2007 Mar; 40(14):3105-3113
NIOSHTIC No.
20033019
Abstract
Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.
Keywords
Humans; Musculoskeletal-system; Muscle-function; Biomechanics; Age-factors; Sex-factors; Mathematical-models
Contact
Michael L. Madigan, Department of Engineering Science and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 20461
CODEN
JBMCB5
Publication Date
20070301
Document Type
Journal Article
Funding Type
Grant
Fiscal Year
2007
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R03-OH-007821
Issue of Publication
14
ISSN
0021-9290
Source Name
Journal of Biomechanics
State
VA
Performing Organization
Virginia Polytechnic Institute and State University
TOP