Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

A geometrical model of dermal capillary clearance.

Authors
Kretsos-K; Kasting-GB
Source
Math Biosci 2007 Aug; 208(2):430-453
NIOSHTIC No.
20032788
Abstract
A new microscopic model is developed to describe the dermal capillary clearance process of skin permeants. The physiological structure is represented in terms of a doubly periodic array of absorbing capillaries. Convection-dominated transport in the blood flow within the capillaries is coupled with interstitial diffusion, the latter process being quantified via a slender-body-theory approach. Convection across the capillary wall and in the interstitial phase is treated as a perturbation which may be added to the diffusive transport. The model accounts for the finite permeability of the capillary wall as well as for the geometry of the capillary array, based on realistic values of physiological parameters. Calculated dermal concentration profiles for permeants having the size and lipophilicity of salicylic acid and glucose illustrate the power and general applicability of the model. Furthermore, validation of the model with published in vivo experimental results pertaining to human skin permeation of hydrocortisone is presented. The model offers the possibility for in-depth theoretical understanding and prediction of subsurface drug distribution in the human skin following topical application, as well as rates of capillary clearance into the systemic circulation. A simpler approach that treats the capillary bed as a homogeneously absorbing zone is also employed. The latter may be used in conjunction with the capillary exchange model to estimate measurable dermal transport and clearance parameters in a straightforward manner.
Keywords
Diffusion-analysis; Skin; Cytology; Dermatology; Skin-tests; Blood-vessels; Dermatosis; Circulatory-system; Mathematical-models
Contact
Kosmas Kretsos, University at Buffalo, State University of New York, Department of Chemical and Biological Engineering, Furnas Hall, Buffalo, NY 14260-4200
CODEN
MABIAR
Publication Date
20070801
Document Type
Journal Article
Email Address
kretsos@entelos.com
Funding Type
Grant
Fiscal Year
2007
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-007529
Issue of Publication
2
ISSN
0025-5564
Priority Area
Research Tools and Approaches: Exposure Assessment Methods
Source Name
Mathematical Biosciences
State
OH
Performing Organization
University of Cincinnati
TOP