Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Cluster analysis of the dermal permeability and stratum corneum/solvent partitioning of ten chemicals in twenty-four chemical mixtures in porcine skin.

Authors
van der Merwe-D; Riviere-JE
Source
Skin Pharmacol Physiol 2006; 19(4):198-206
NIOSHTIC No.
20031336
Abstract
Assumptions based on absorption from single solvent systems may be inappropriate for risk assessment when chemical mixtures are involved. We used K-means and hierarchical cluster analyses to identify clusters in stratum corneum partitioning and porcine skin permeability datasets that are distinct from each other based on mathematical indices of similarity and dissimilarity. Twenty-four solvent systems consisting of combinations of water, ethanol, propylene glycol, methyl nicotinate and sodium lauryl sulfate were used with 10 solutes, including phenol, p-nitrophenol, pentachlorophenol, methyl parathion, ethyl parathion, chlorpyrifos, fenthion, simazine, atrazine and propazine. Identifying the relationships between solvent systems that have similar effects on dermal absorption formed the bases for hypotheses generation. The determining influence of solvent polarity on the partitioning data structure supported the hypothesis that solvent polarity drives the partitioning of non-polar solutes. Solvent polarity could not be used to predict permeability because solvent effects on diffusivity masked the effects of partitioning on permeability. The consistent influence of the inclusion of propylene glycol in the solvent system supports the hypothesis that over-saturation due to solvent evaporation has a marked effect on permeability. These results demonstrated the potential of using cluster analysis of large datasets to identify consistent solvent and chemical mixture effects.
Keywords
Skin-absorption; Skin-exposure; Solvents; Ethanols; Glycols; Risk-analysis
Contact
J.E. Riviere, Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, NC 27606
CODEN
SPAPFF
Publication Date
20060101
Document Type
Journal Article
Email Address
Jim_Riviere@ncsu.edu
Funding Amount
746428
Funding Type
Grant
Fiscal Year
2006
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-007555
Issue of Publication
4
ISSN
1660-5527
Priority Area
Work Environment and Workforce: Mixed Exposures
Source Name
Skin Pharmacology and Physiology
State
NC
Performing Organization
North Carolina State University, Raleigh, North Carolina
TOP