Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Analysis of the dynamic strains in a fingertip exposed to vibrations: Correlation to the mechanical stimuli on mechanoreceptors.

Authors
Wu-JZ; Krajnak-K; Welcome-DE; Dong-RG
Source
J Biomech 2006; 39(13):2445-2456
NIOSHTIC No.
20031134
Abstract
The reduction in vibrotactile sensitivity in the fingertip is assumed to be associated with the exposure of the tissues to repetitive, non-physiological strains during dynamic loading. Experimental results demonstrated that the magnitude of a vibration-induced temporary threshold shift is dependent upon the vibration frequency of both the exposure and testing stimuli. In the present study, the frequency-dependent strain imposed on cutaneous and subcutaneous tissues of the fingertip is analyzed theoretically using a finite element model. The proposed fingertip model is two-dimensional and includes major anatomical substructures: skin, subcutaneous tissue, bone, and nail. The soft tissues (skin and subcutaneous tissues) were assumed to be nonlinearly elastic and viscoelastic, while the bone and nail were considered as linearly elastic. Simulations were performed for the contact between the fingertip and a flat surface for four different pre-compressions (0.5, 1.0, 1.5, and 2.0 mm). The frequency-dependent distributions of the dynamic strain magnitudes in the soft tissues were investigated. The model predictions indicated that the vibration exposure at a frequency range from 63 to 250 Hz will induce excessive dynamic strain in the deep zone of the finger tissues, effectively inhibiting the high-frequency mechanoreceptors; while the vibration exposure at low frequency (less than 31.5 Hz) tends to induce excessive dynamic strain in superficial layer in the tissues, inhibiting the low-frequency mechanoreceptors. These theoretical predictions are consistent with the experimental observations in literature. The proposed model can be used to predict the responses of the soft tissues in different depths to vibration exposures, providing valuable information and data that are essential for improving vibrotactile perception tests.
Keywords
Biomechanics; Vibration; Vibration-exposure; Models; Repetitive-work; Vibration-effects
Contact
National Institute for Occupational Safety & Health CDC, 1095 Willowdale Road, MS-2027, Morgantown, WV 26505, USA
CODEN
JBMCB5
Publication Date
20060101
Document Type
Journal Article
Email Address
jwu@cdc.gov
Fiscal Year
2006
NTIS Accession No.
NTIS Price
Issue of Publication
13
ISSN
0021-9290
NIOSH Division
HELD
Priority Area
Disease and Injury: Musculoskeletal Disorders of the Upper Extremities
Source Name
Journal of Biomechanics
State
WV
TOP