Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Validation of a standardized portable fluorescence method for determining trace beryllium in workplace air and wipe samples.

Authors
Agrawal-A; Cronin-J; Tonazzi-J; McCleaskey-TIM; Ehler-DS; Minogue-EM; Whitney-G; Brink-C; Burrell-AK; Warner-B; Goldcamp-MJ; Schlecht-PC; Sonthalia-P; Ashley-K
Source
J Environ Monit 2006 Jun; 8(6):619-624
NIOSHTIC No.
20030407
Abstract
Beryllium is widely used in industry for its unique properties; however, occupational exposure to beryllium particles can cause potentially fatal disease. Consequently, exposure limits for beryllium particles in air and action levels on surfaces have been established to reduce exposure risks for workers. Field-portable monitoring methods for beryllium are desired in order to facilitate on-site measurement of beryllium in the workplace, so that immediate action can be taken to protect human health. In this work, a standardized, portable fluorescence method for the determination of trace beryllium in workplace samples, i.e., air filters and dust wipes, was validated through intra- and inter-laboratory testing. The procedure entails extraction of beryllium in 1% ammonium bifluoride (NH(4)HF(2), aqueous), followed by fluorescence measurement of the complex formed between beryllium ion and hydroxybenzoquinoline sulfonate (HBQS). The method detection limit was estimated to be less than 0.02 microg Be per air filter or wipe sample, with a dynamic range up to greater than 10 microg. The overall method accuracy was shown to satisfy the accuracy criterion (A< / =+/-25%) for analytical methods promulgated by the US National Institute for Occupational Safety and Health (NIOSH). Interferences from numerous metals tested (in >400-fold excess concentration compared to that of beryllium) were negligible or minimal. The procedure was shown to be effective for the dissolution and quantitative detection of beryllium extracted from refractory beryllium oxide particles. An American Society for Testing and Materials (ASTM) International voluntary consensus standard based on the methodology has recently been published.
Keywords
Beryllium-compounds; Trace-substances; Air-sampling; Air-samples; Sampling; Sampling-methods; Occupational-exposure; Occupational-health; Occupational-hazards; Occupational-diseases; Diseases; Exposure-limits; Exposure-assessment; Risk-factors; Risk-analysis; Workers; Worker-health; Laboratory-testing; Analytical-methods
Contact
Berylliant, Inc., 4541 E. Fort Lowell Road, Tucson, AZ 85712, USA
CODEN
JEMOFW
CAS No.
7440-41-7
Publication Date
20060601
Document Type
Journal Article
Fiscal Year
2006
NTIS Accession No.
NTIS Price
Issue of Publication
6
ISSN
1464-0325
NIOSH Division
DART
Source Name
Journal of Environmental Monitoring
State
OH; AZ
TOP