Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Innovative approach for estimating fugitive gaseous fluxes using computed tomography and remote optical sensing techniques.

Authors
Hashmonay-RA; Yost-MG
Source
J Air Waste Manage Assoc 1999 Aug; 49(8):966-972
NIOSHTIC No.
20030009
Abstract
This paper presents a new approach to quantify emissions from fugitive gaseous air pollution sources. The authors combine Computed Tomography (CT) with Path-Integrated Optical Remote Sensing (PI-ORS) concentration data in a new field beam geometry. Path-integrated concentrations are sampled in a vertical plane downwind from the source along several radial beam paths. An innovative CT technique, which applies the Smooth Basis Function Minimization method to the beam data in conjunction with measured wind data, is used to estimate the total flux from the fugitive source. The authors conducted a synthetic data study to evaluate the proposed methodology under different meteorological conditions, beam geometry configurations, and simulated measurement errors. The measurement errors were simulated based on data collected with an Open-Path Fourier Transform Infra-Red system. This approach was found to be robust for the simulated errors and for a wide range of fluctuating wind directions. In the very sparse beam geometry examined (eight beam paths), successful emission rates were retrieved over a 70 degrees range of wind directions under extremely large measurement error conditions.
Keywords
Exposure-levels; Exposure-assessment; Simulation-methods; Workers; Computer-models; Mathematical-models; Models; Air-contamination; Air-filters; Air-purification; Air-quality-measurement; Air-samples; Air-sampling
Contact
Department of Environmental Health, University of Washington, Seattle, WA
CODEN
AIWAE2
Publication Date
19990801
Document Type
Journal Article
Funding Type
Grant
Fiscal Year
1999
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-002660
Issue of Publication
8
ISSN
1096-2247
Source Name
Journal of the Air and Waste Management Association
State
WA
TOP