Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy.

Authors
Oberdorster-G; Maynard-A; Donaldson-K; Castranova-V; Fitzpatrick-J; Ausman-K; Carter-J; Karn-B; Kreyling-W; Lai-D; Olin-S; Monteiro-Riviere-N; Warheit-D; Yang-H
Source
Part Fibre Toxicol 2005 Oct; 2:8
NIOSHTIC No.
20029402
Abstract
The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability, protein interactions, complement activation, and pro-oxidant activity is also considered. Tier 1 in vivo assays are proposed for pulmonary, oral, skin and injection exposures, and Tier 2 evaluations for pulmonary exposures are also proposed. Tier 1 evaluations include markers of inflammation, oxidant stress, and cell proliferation in portal-of-entry and selected remote organs and tissues. Tier 2 evaluations for pulmonary exposures could include deposition, translocation, and toxicokinetics and biopersistence studies; effects of multiple exposures; potential effects on the reproductive system, placenta, and fetus; alternative animal models; and mechanistic studies.
Keywords
Occupational-health; Occupational-exposure; Occupational-hazards; Health-hazards; Risk-analysis; Toxins; Toxicology; Toxic-effects; In-vitro-studies; In-vivo-studies; Exposure-assessment; Nanotechnology
Contact
Department of Environmental Medicine, University of Rochester, PO Box EHSC, Rochester, NY 14642, USA
Publication Date
20051006
Document Type
Journal Article
Email Address
gunter_oberdorster@urmc.rochester.edu
Fiscal Year
2006
NTIS Accession No.
NTIS Price
ISSN
1743-8977
NIOSH Division
HELD
Priority Area
Disease and Injury: Asthma and Chronic Obstructive Pulmonary Disease
Source Name
Particle and Fibre Toxicology
State
WV; NY; DC; OH; NC; TX; DE
TOP