Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Differences in dissolution behavior in a phagolysosomal simulant fluid for single-constituent and multi-constituent materials associated with beryllium sensitization and chronic beryllium disease.

Authors
Stefaniak-AB; Day-GA; Hoover-MD; Breysse-PN; Scripsick-RC
Source
Toxicol In Vitro 2006 Feb; 20(1):82-95
NIOSHTIC No.
20029321
Abstract
Particle dissolution within macrophage phagolysosomes is hypothesized to be an important source of dissolved beryllium for input to the cell-mediated immune reaction associated with development of beryllium sensitization and chronic beryllium disease (CBD). To better understand the dissolution of beryllium materials associated with elevated prevalence of sensitization and CBD, single-constituent (beryllium oxide (BeO) particles sampled from a screener operation, finished product BeO powder, finish product beryllium metal powder) and multi-constituent (particles sampled from an arc furnace during processing of copper-beryllium alloy) aerosol materials were studied. Dissolution rates were measured using phagolysosomal simulant fluid (PSF) in a static dissolution technique and then normalized to measured values of specific surface area to calculate a chemical dissolution rate constant (k) for each material. Values of k, in g/(cm2 day), for screener BeO particles (1.3 1.9 10-8) and for BeO powder (1.1 0.5 10-8) were similar (p = 0.45). The value of k observed for beryllium metal powder (1.1 1.4 10-7) was significantly greater than observed for the BeO materials (p < 0.0003). For arc furnace particles, k (1.6 0.6 10-7) was significantly greater than observed for the BeO materials (p < 0.00001), despite the fact that the chemical form of beryllium in the aerosol was BeO. These results suggest that dissolution of beryllium differs among physicochemical forms of beryllium and direct measurement of dissolution is needed for multi-constituent aerosol. Additional studies of the dissolution behavior of beryllium materials in a variety of mixture configurations will aid in developing exposure-response models to improve understanding of the risk of beryllium sensitization and CBD.
Keywords
Beryllium-compounds; Beryllium-disease; Sensitization; Immune-reaction; Cellular-reactions; Diseases; Aerosol-particles; Aerosols; Models; Respiratory-system-disorders; Risk-analysis; Risk-factors; Pulmonary-system-disorders; Phagocytic-activity; Physical-chemistry; Chemical-reactions; Copper-alloys
Contact
National Institute for Occupational Safety and Health, Division of Respiratory Disease Studies, Mailstop H-2800, 1095 Willowdale Road, Morgantown, WV 26505
CODEN
TIVIEQ
CAS No.
7440-41-7; 1034-56-9; 7440-50-8; 1317-39-1
Publication Date
20060201
Document Type
Journal Article
Email Address
astefaniak@cdc.gov
Funding Amount
76780
Funding Type
Grant
Fiscal Year
2006
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R03-OH-007447; Grant-Number-T42-OH-008428
Issue of Publication
1
ISSN
0887-2333
NIOSH Division
DRDS
Priority Area
Disease and Injury: Asthma and Chronic Obstructive Pulmonary Disease
Source Name
Toxicology in Vitro
State
MD; NM; WV
Performing Organization
Johns Hopkins University, Baltimore, Maryland
TOP