Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Mobility of water in human stratum corneum.

Authors
Kasting-GB; Barai-ND; Wang-TF; Nitsche-JM
Source
J Pharm Sci 2003 Nov; 92(11):2326-2340
NIOSHTIC No.
20029200
Abstract
At low water activities, stratum corneum (SC) water sorption resembles that in other keratinized tissues (i.e., wool and horn), whereas at high water activities, it resembles that in polymeric hydrogels. We propose that the concentration-dependent water diffusivity observed in these other systems applies to the corneocyte phase of the SC. An increase in SC hydration leads to increased water diffusivity in the corneocytes, in accordance with the predictions of both effective diffusion and free volume theories. Thus, theoretical results on effective diffusivity in a composite medium with random fiber obstacles and a free volume theory for water diffusivity in hydrogels (calibrated using data from wool and horn) have been applied to human SC water sorption data to estimate and establish theoretical limits on water diffusivity in corneocytes as a function of water activity. These results are used in conjunction with steady-state water permeability data to estimate the water permeability of both corneocyte and lipid phases of the SC under hydrated and partially hydrated conditions. The results of the analysis, when combined with previous spectroscopic analyses, strongly suggest that the lipids provide most of the SC water barrier in either case; thus, the diffusion pathway for water is primarily transcellular.
Keywords
Diffusion-analysis; Laboratory-animals; Animals; Animal-studies; Humans; In-vitro-study; In-vitro-studies; Thermodynamics; Water-analysis; Skin; Cytology
Contact
Gerald B. Kasting, College of Pharmacy, The University of Cincinnati Medical Center, PO Box 670004, Cincinnati, Ohio 45267-0004, USA
CODEN
JPMSAE
Publication Date
20031101
Document Type
Journal Article
Email Address
Gerald.Kasting@uc.edu
Funding Type
Grant
Fiscal Year
2004
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-007529
Issue of Publication
11
ISSN
0022-3549
Priority Area
Research Tools and Approaches: Exposure Assessment Methods
Source Name
Journal of Pharmaceutical Sciences
State
OH
Performing Organization
University of Cincinnati
TOP