Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

A study of lifting tasks performed on laterally slanted ground surfaces.

Authors
Jiang-Z; Shin-G; Freeman-J; Reid-S; Mirka-GA
Source
Ergonomics 2005 Jun; 48(7):782-795
NIOSHTIC No.
20028827
Abstract
Lifting in most industrial environments is performed on a smooth, level ground surface. There are, however, many outdoor work environments (e.g. agriculture and construction) that require manual material handling activities on variable grade ground surfaces. Quantifying the biomechanical response while lifting under these conditions may provide insight into the aetiology of lifting-related injury. The aim of the current study was to quantify the effect of laterally slanted ground surfaces on the biomechanical response. Ten subjects performed both isometric weight-holding tasks and dynamic lifting exertions (both using a 40% of max load) while standing on a platform that was laterally tilted at 0, 10, 20 and 30 degrees from horizontal. As the subject performed the isometric exertions, the electromyographic (EMG) activity of trunk extensors and knee extensors were collected and during the dynamic lifting tasks the whole body kinematics were collected. The whole body kinematics data were used in a dynamic biomechanical model to calculate the time-dependent moment about L5/S1 and the time-dependent lateral forces acting on the body segments. The results of the isometric weight-holding task show a significant (p < 0.05) effect of slant angle on the normalized integrated EMG values in both the left (increase by 26%) and right (increase by 70%) trunk extensors, indicating a significant increase in the protective co-contraction response. The results of the dynamic lifting tasks revealed a consistent reduction in the peak dynamic L5/S1 moment (decreased by 9%) and an increase in the instability producing lateral forces (increased by 111%) with increasing slant angle. These results provide quantitative insight into the response of the human lifter under these adverse lifting conditions.
Keywords
Surface-properties; Ground-stability; Work-environment; Biomechanics; Injuries; Models; Materials-handling; Manual-lifting; Manual-materials-handling; Humans
Contact
The Ergonomics Laboratory, Department of Industrial Engineering, North Carolina State University, Box 7906, Raleigh, North Carolina, NC, 27695-7906, USA
CODEN
ERGOAX
Publication Date
20050601
Document Type
Journal Article
Email Address
zjiang3@ncsu.edu
Funding Type
Cooperative Agreement
Fiscal Year
2005
NTIS Accession No.
NTIS Price
Identifying No.
Cooperative-Agreement-Number-U50-OH-007551
Issue of Publication
7
ISSN
0014-0139
Source Name
Ergonomics
State
NC
Performing Organization
East Carolina University
TOP