Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Asymmetric and axisymmetric constant curvature liquid-gas interfaces in pulmonary airways.

Authors
Lindsley-WG; Collicott-SH; Franz-GN; Stolarik-B; McKinney-W; Frazer-DG
Source
Ann Biomed Eng 2005 Jan; 33(3):365-375
NIOSHTIC No.
20026634
Abstract
Airway closure and gas trapping can occur during lung deflation and inflation when fluid menisci form across the lumina of respiratory passageways. Previous analyses of the behavior of liquid in airways have assumed that the airway is completely wetted or that the contact angle of the liquid-gas interface with the airway wall is 0 degrees, and thus that the airway fluid forms an axisymmetric surface. However, some investigators have suggested that liquid in the airways is discontinuous and that contact angles can be as high as 67 degrees. In this study we consider the characteristics of constant curvature surfaces that could form a stable liquid-gas interface in a cylindrical airway. Our analysis suggests that, for small liquid volumes, asymmetric droplets are more likely to form than axisymmetric toroids. In addition, if the fluid contact angle is greater than 13 degrees, asymmetric droplets can sustain larger liquid volumes than axisymmetric toroids before collapsing to form menisci. These results suggest that (1) fluid formations other than axisymmetric toroids could occur in the airways; and (2) the analysis of the behavior of fluids and the development of liquid menisci within the lungs should include the potential role of asymmetric droplets.
Keywords
Airway-obstruction; Airway-resistance; Lung-disorders; Pulmonary-system-disorders; Respiratory-system-disorders
Contact
Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, 26505, WV
CODEN
ABMECF
Publication Date
20050101
Document Type
Journal Article
Email Address
wlindsley@cdc.gov
Fiscal Year
2005
NTIS Accession No.
NTIS Price
Issue of Publication
3
ISSN
0090-6964
NIOSH Division
HELD
Priority Area
Disease and Injury: Infectious Diseases
Source Name
Annals of Biomedical Engineering
State
WV; IN
TOP