Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Computer motion simulation for sagittal plane lifting activities.

Authors
Lin-CJ; Ayoub-MM; Bernard-TM
Source
Int J Ind Ergon 1999 May; 24(2):141-155
NIOSHTIC No.
20024553
Abstract
In ergonomics, the biomechanical approach provides estimation of various mechanical stresses acting on the body while a person manually handles an object. Although motion analysis systems are available for dynamic biomechanical analyses, the use of such systems are mostly performed in laboratory due to high cost of the equipment and the expertise required in using them. Industrial ergonomists have limited access to dynamic biomechanical analyses. This paper reports a dynamic simulation model developed for biomechanical analyses of lifting activities performed in the sagittal plane. The model simulates the dynamic motion of lifting tasks for five body joints: the elbow, shoulder, hip, knee, and ankle. The inputs of the model include initial and final joint postures; gender, weight, and height; weight of load; lifting height; and container dimensions. In the output, the angular trajectories of the five joints are predicted. The model without any video inputs predicts the motion patterns of the lift. Actual motion data were collected using 10 subjects in the laboratory for 360 lifts which included 12 lifting tasks in combination of two lifting heights, two container sizes, and three weights of load. Good results were found for the dynamic planar motion simulation model. The predicted motion pattern from the simulation closely resembles the observed motion pattern.
Keywords
Back-injuries; Injuries; Injury-prevention; Questionnaires; Manual-materials-handling; Materials-handling; Manual-lifting; Biomechanics; Biomechanical-modeling; Models; Simulation-methods; Kinetics
Publication Date
19990501
Document Type
Journal Article
Funding Amount
576316
Funding Type
Grant
Fiscal Year
1999
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R18-OH-003202
Issue of Publication
2
ISSN
0169-8141
Priority Area
Disease and Injury: Low Back Disorders
Source Name
International Journal of Industrial Ergonomics
State
TX
Performing Organization
Texas Tech University, Industrial Engineering Department, Lubbock, Texas
TOP