Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

On the use of computational fluid dynamics in the prediction and control of exposure to airborne contaminants - an illustration using spray painting.

Authors
Flynn-MR; Sills-ED
Source
Ann Occup Hyg 2000 May; 44(3):191-202
NIOSHTIC No.
20024440
Abstract
Computational fluid dynamics (CFD) is employed to simulate breathing-zone concentration for a simple representation of spray painting a flat plate in a cross-flow ventilated booth. The results demonstrate the capability of CFD to track correctly changes in breathing-zone concentration associated with work practices shown previously to be significant in determining exposure. Empirical data, and models verified through field studies, are used to examine the predictive capability of these simulations and to identify important issues in the conduct of such comparisons. A commercially available CFD package is used to solve a three-dimensional turbulent flow problem for the velocity field, and to subsequently generate particle trajectories for polydisperse aerosols. An in-house algorithm is developed to convert the trajectory data to breathing-zone concentrations, transfer efficiencies and aerosol size distributions. The mesh size, time step, duration of the simulation, and number of particles per size interval are all important variables in achieving convergent results.
Keywords
Exposure-levels; Paint-spraying; Painting; Fluid-mechanics; Mathematical-models; Models; Ventilation; Computer-software; Exposure-assessment; Motion-studies; Spray-painting
CODEN
AOHYA3
Publication Date
20000501
Document Type
Journal Article
Email Address
mike_flynn@unc.edu
Funding Amount
280127
Funding Type
Grant
Fiscal Year
2000
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-002858
Issue of Publication
3
ISSN
0003-4878
Priority Area
Research Tools and Approaches: Exposure Assessment Methods
Source Name
Annals of Occupational Hygiene
State
NC
Performing Organization
Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina
TOP