Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

A birth-process approach to Moranda's geometric software-reliability model.

Authors
Boland-PJ; Singh-H
Source
IEEE Trans Reliab 2003 Jun; 52(2):168-174
NIOSHTIC No.
20023424
Abstract
To alleviate some of the objections to the basic Jelinski Moranda (JM) model for software failures, Moranda [14] proposed a geometric de-eutrophication model. This model assumes that the times between failures are statistically-independent exponential random variables with given failure rates. In this model the failure rates decrease geometrically with the detection of a fault. Using an intuitive approach, Musa, Iannino, Okumoto [15], see also Farr [5], derived expressions for the mean and the intensity functions of the process N ( t) which counts the number of faults detected in the time interval [0, t] for the Moranda geometric de-eutrophication model. N(t) is studied as a pure birth stochastic process; its probability generating function Is derived, as well as its mean, intensity and reliability functions. The expressions for the mean and intensity functions derived by MIO are only approximations and can be quite different from the true functions for certain choices of the failure rates. The exact expressions for the mean function and the intensity function of N (t) are used to find the optimum release time of software based on a cost structure for Moranda's geometric de-eutrophication model.
Keywords
Models; Computer-models; Simulation-methods; Statistical-analysis; Computers; Computer-software
CODEN
IEERAJ
Publication Date
20030601
Document Type
Journal Article
Email Address
Phillip.J.Boland@ucd.ie
Fiscal Year
2003
NTIS Accession No.
NTIS Price
Issue of Publication
2
ISSN
0018-9529
NIOSH Division
HELD
Source Name
IEEE Transactions on Reliability
State
WV
TOP