Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Comparison of human and rodent lung dosimetry models for particle clearance and retention.

Authors
Kuempel-ED
Source
Drug Chem Toxicol 2000 Feb; 23(1):203-222
NIOSHTIC No.
20020724
Abstract
Interspecies differences in the kinetics and/or mechanisms of particle retention can influence the amount and location of particle retention in the lungs, which can also influence the tissue response to a given particle burden. Dosimetric models may be used to adjust for differences in the exposure-dose relationships in different species, thus allowing for comparison of lung responses at equivalent doses. Although the rat is one of the most frequently used animal models for assessing the risk of exposures to hazardous substances in humans, few data are available for comparison of human and animal responses to inhaled particles. A biologically-based human dosimetric lung model was developed to describe the fate of respirable particles in the lungs of humans, using data from U.S. coal miners and assumptions about the overloading of alveolar clearance from studies in rats. This model includes alveolar, interstitial, and hilar lymph node compartments. The form of the model that provides the best fit to the lung dust burden data in these coal miners includes a first-order interstitialization process and either no dose-dependent decline in alveolar clearance or much less decline than expected from rodent studies. These findings are consistent with the particle retention patterns observed previously in the lungs of primates. This human lung dosimetry model is useful for investigating the factors that may influence the relationships between the airborne particle exposure, lung dust burden, and fibrotic lung disease.
Keywords
Particulates; Particle-counters; Particulate-dust; Particulate-sampling-methods; Lung; Lung-function; Lung-irritants; Inhalants; Inhalation-studies; Models; Risk-analysis
Contact
Risk Evaluation Branch, National Institute for Occupational Safety and Health, Cincinnati, OH 45226-1998, USA.
CODEN
DCTODJ
Publication Date
20000201
Document Type
Journal Article
Email Address
edkl@cdc.gov
Fiscal Year
2000
NTIS Accession No.
NTIS Price
Issue of Publication
1
ISSN
0148-0545
NIOSH Division
EID
Source Name
Drug Chem Toxicol
State
OH
TOP