Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Superoxide-independent reduction of vanadate by rat liver microsomes/NAD(P)H: vanadate reductase activity.

Authors
Shi-X; Dalal-NS
Source
Arch Biochem Biophys 1992 May; 295(1):70-75
NIOSHTIC No.
10012229
Abstract
It has been reported that vanadate-stimulated oxidation of NAD(P)H by microsomal systems can proceed anaerobically, in contrast to the general notion that the oxidation proceeds exclusively by an O2-1-dependent free radical chain mechanism. The current study indicates that microsomal systems are endowed with a vanadate-reductase property, involving a NAD(P)H-dependent electron transport cytochrome P450 system. Our ESR measurements demonstrated the formation of a vanadium (IV) species in a mixture containing vanadate, rat liver microsomes, and NAD(P)H. This vanadium(IV) species was identified as the vanadyl ion (VO2+) by comparison with the ESR spectrum of VOSO4. The initial rate of vanadium(IV) formation depends linearly on the concentration of microsomes. The Michaelis-Menten constants were found to be: km = 1.25 mM and Vmax = 0.066 Ámol (min)-1 (mg microsomes)-1, respectively. Pretreatment of the microsomes with carbon monoxide or K3Fe(CN)6 reduced vanadium(IV) generation, suggesting that the NAD(P)H-dependent electron transport cytochrome P450 system plays a significant role in the microsomal reduction of vanadate. Measurements under argon or in the presence of superoxide dismutase caused only minor (less than 10%) reductions in vanadium(IV) generation. The VO2+ species was also detected in NAD(P)H oxidation by fructose plus vanadate, a reaction known to proceed via an O2--mediated chain mechanism. However, the amount of vanadium(IV) generated by this reaction was an order of magnitude smaller than that by the microsomal system and was inhibitable by superoxide dismutase, affirming the conclusion that the microsomal/ NAD(P)H system is endowed with the (O2--independent) vanadium(V) reductase property.
Keywords
Chemical-properties; Chemical-reactions; Chemical-analysis; Microsomal-enzymes; Enzyme-activity; Enzymatic-effects
CODEN
ABBIA4
CAS No.
13721-39-6
Publication Date
19920501
Document Type
Journal Article
Funding Type
Cooperative Agreement
Fiscal Year
1992
NTIS Accession No.
NTIS Price
Identifying No.
MIR 27-93; Cooperative-Agreement-Number-U60-CCU-306149
Issue of Publication
1
ISSN
0003-9861
Source Name
Archives of Biochemistry and Biophysics
State
DC; WV
Performing Organization
Center to Protect Workers' Rights
TOP