Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors.

Authors
Dvorak-DH; Hedin-RS; Edenborn-HM; McIntire-PE
Source
Biotechnol Bioeng 1992 May; 40(5):609-616
NIOSHTIC No.
10011471
Abstract
Simple anaerobic reactors were installed to treat metal-contaminated water in an underground coal mine and at a smelting residues dump in Pennsylvania. The reactors consisted of barrels and tanks filled with spent mushroom compost, within which bacterial sulfate reduction became established. Concentrations of Al, Cd, Fe, Mn, Ni, and Zn were typically lowered by over 95 pct as contaminated water flowed through the reactors. Cadmium, Fe, Ni, and some Zn were retained as insoluble metal sulfides following their reaction with bacterially generated H2S. Aluminum, Mn, and some Zn hydrolyzed and were retained as insoluble hydroxides or carbonates. Reactor effluents were typically circumneutral in ph and contained net alkalinity. The principal sources of alkalinity in the reactors were bacterial sulfate reduction and limestone dissolution. This article examines the chemistry of the reactor systems and the opportunities for enhancing their metal-retaining and alkalinity-generating potential.
Keywords
Mining-industry; Underground-mining; Coal-mining; Waste-treatment; Metals
CODEN
BIBIAU
Publication Date
19920501
Document Type
OP; Journal Article
Fiscal Year
1992
NTIS Accession No.
NTIS Price
Identifying No.
OP 221-92
ISSN
0006-3592
NIOSH Division
PRC
Source Name
Biotechnology and Bioengineering
State
PA
TOP